Noncausal Count Processes

C. Gouriéroux, Yang Lu
{"title":"Noncausal Count Processes","authors":"C. Gouriéroux, Yang Lu","doi":"10.2139/ssrn.3438687","DOIUrl":null,"url":null,"abstract":"We introduce noncausal processes to the count time series literature. These processes are defined by time-reversing an INAR(1) process, a non-INAR(1) Markov affine count process, or a random coefficient INAR(1) [RCINAR(1)] process. In the special cases of INAR(1) and RCINAR(1), the causal process and its noncausal counterpart are closely related through a same queuing system with different stochastic specifications. The noncausal processes we introduce are generically time irreversible and have some unique calendar time dynamic properties that are unreplicable by existing causal models. In particular they allow for locally bubble-like explosion, while at the same time remaining stationary. These processes have closed form calendar time conditional probability mass function, which facilitates nonlinear forecasting.","PeriodicalId":193739,"journal":{"name":"EarthSciRN: Water Resources Science (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EarthSciRN: Water Resources Science (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3438687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce noncausal processes to the count time series literature. These processes are defined by time-reversing an INAR(1) process, a non-INAR(1) Markov affine count process, or a random coefficient INAR(1) [RCINAR(1)] process. In the special cases of INAR(1) and RCINAR(1), the causal process and its noncausal counterpart are closely related through a same queuing system with different stochastic specifications. The noncausal processes we introduce are generically time irreversible and have some unique calendar time dynamic properties that are unreplicable by existing causal models. In particular they allow for locally bubble-like explosion, while at the same time remaining stationary. These processes have closed form calendar time conditional probability mass function, which facilitates nonlinear forecasting.
非因果计数过程
我们将非因果过程引入计数时间序列文献。这些过程由时间反转的INAR(1)过程、非INAR(1)马尔可夫仿射计数过程或随机系数的INAR(1) [RCINAR(1)]过程来定义。在INAR(1)和RCINAR(1)的特殊情况下,因果过程和非因果对应物通过具有不同随机规范的同一排队系统密切相关。我们引入的非因果过程一般是时间不可逆的,并且具有一些独特的日历时间动态特性,这些特性是现有因果模型无法复制的。特别是,它们允许局部的泡沫状爆炸,同时保持静止。这些过程具有封闭的日历时间条件概率质量函数,便于非线性预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信