Scalability of fully-depleted SOI technology into 0.13 /spl mu/m 1.2 V-1 V CMOS generation

C. Raynaud, O. Faynot, J. Pelloie, F. Martin, S. Tedesco, J. Cluzel, A. Grouillet, B. Dal'zotto, D. Vanhoenacker
{"title":"Scalability of fully-depleted SOI technology into 0.13 /spl mu/m 1.2 V-1 V CMOS generation","authors":"C. Raynaud, O. Faynot, J. Pelloie, F. Martin, S. Tedesco, J. Cluzel, A. Grouillet, B. Dal'zotto, D. Vanhoenacker","doi":"10.1109/SOI.1999.819865","DOIUrl":null,"url":null,"abstract":"Scalability of SOI technology into 0.13 /spl mu/m 1.2 V CMOS has been demonstrated for partially-depleted (PD) devices (Leobandung et al., 1998). Propagation delay versus active power can be greatly reduced by using fully-depleted (FD) devices, because threshold voltage (V/sub t/) and junction capacitance (increased by halo implant in case of bulk and PD devices) are lower. However, this advantage is possible only if transconductance is not degraded by high S/D resistance and if SCE and DIBL are well controlled, essentially by reducing silicon thickness. Furthermore, sensitivity of electrical parameters to silicon thickness (tsi) for FD devices is often mentioned as a critical process issue due to SOI substrate thickness nonuniformity. In this paper, we show (with both 2D simulations and measurements) that V/sub t/ control can be improved by a low energy S/D implant for enhancement-mode (EM) devices. S/D resistance can also be maintained at a low enough level by using a recessed-channel process, which allows the proper reduction of tsi exactly under the gate (Raynaud et al., 1998). Using a TiSi/sub 2/ salicide process on gate and elevated S/D regions, we have measured a maximum oscillation frequency f/sub max/ of 48 GHz at 0.9 V for 0.25 /spl mu/m NMOS. Finally, we show that, due to a balance between different physical effects, the distribution of critical parameters for digital applications (saturation and off currents, propagation delay and power consumption) is not degraded by silicon thickness nonuniformity.","PeriodicalId":117832,"journal":{"name":"1999 IEEE International SOI Conference. Proceedings (Cat. No.99CH36345)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE International SOI Conference. Proceedings (Cat. No.99CH36345)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOI.1999.819865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Scalability of SOI technology into 0.13 /spl mu/m 1.2 V CMOS has been demonstrated for partially-depleted (PD) devices (Leobandung et al., 1998). Propagation delay versus active power can be greatly reduced by using fully-depleted (FD) devices, because threshold voltage (V/sub t/) and junction capacitance (increased by halo implant in case of bulk and PD devices) are lower. However, this advantage is possible only if transconductance is not degraded by high S/D resistance and if SCE and DIBL are well controlled, essentially by reducing silicon thickness. Furthermore, sensitivity of electrical parameters to silicon thickness (tsi) for FD devices is often mentioned as a critical process issue due to SOI substrate thickness nonuniformity. In this paper, we show (with both 2D simulations and measurements) that V/sub t/ control can be improved by a low energy S/D implant for enhancement-mode (EM) devices. S/D resistance can also be maintained at a low enough level by using a recessed-channel process, which allows the proper reduction of tsi exactly under the gate (Raynaud et al., 1998). Using a TiSi/sub 2/ salicide process on gate and elevated S/D regions, we have measured a maximum oscillation frequency f/sub max/ of 48 GHz at 0.9 V for 0.25 /spl mu/m NMOS. Finally, we show that, due to a balance between different physical effects, the distribution of critical parameters for digital applications (saturation and off currents, propagation delay and power consumption) is not degraded by silicon thickness nonuniformity.
完全耗尽的SOI技术可扩展到0.13 /spl mu/m 1.2 V- 1v CMOS一代
SOI技术在0.13 /spl mu/m 1.2 V CMOS中的可扩展性已被证明用于部分耗尽(PD)器件(Leobandung et al., 1998)。由于阈值电压(V/sub /)和结电容(在散装和PD器件的情况下通过光晕植入而增加)较低,因此使用全耗尽(FD)器件可以大大降低与有功功率相比的传播延迟。然而,只有当高S/D电阻不会降低跨导性,并且SCE和DIBL得到很好的控制(主要是通过减少硅厚度)时,这种优势才有可能实现。此外,由于SOI衬底厚度不均匀性,FD器件的电参数对硅厚度(tsi)的敏感性经常被认为是一个关键的工艺问题。在本文中,我们展示了(通过二维模拟和测量)通过低能量S/D植入增强模式(EM)器件可以改善V/sub / t/控制。S/D电阻也可以通过使用凹槽通道工艺保持在足够低的水平,这允许在栅极下适当降低tsi(雷诺等人,1998)。在栅极和提升S/D区域上使用TiSi/sub 2/ salicide工艺,我们测量了0.25 /spl mu/m NMOS在0.9 V下的最大振荡频率f/sub max/为48 GHz。最后,我们表明,由于不同物理效应之间的平衡,数字应用的关键参数(饱和和关闭电流,传播延迟和功耗)的分布不会因硅厚度不均匀性而降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信