A new semiconductor: Ti0.5Mg0.5N(001)

Baiwei Wang, D. Gall
{"title":"A new semiconductor: Ti0.5Mg0.5N(001)","authors":"Baiwei Wang, D. Gall","doi":"10.1109/NANOTECH.2018.8653564","DOIUrl":null,"url":null,"abstract":"Ti<inf>0.5</inf>Mg<inf>0.5</inf>N has recently been predicted to be a semiconductor with a 1.3 eV band gap and promising properties for thermoelectric and plasmonic devices. As a first step towards experimental validation, epitaxial Ti<inf>0.5</inf>Mg<inf>0.5</inf>N(001) layers are deposited on MgO(001) by reactive magnetron co-sputtering from titanium and magnesium targets at 600 °C in pure N<inf>2</inf> atmospheres. X-ray diffraction ω-2θ scans, ω-rocking curves, φ-scans, and high resolution reciprocal space maps show that Ti<inf>0.5</inf>Mg<inf>0.5</inf>N alloys form a pseudobinary rocksalt structure and are single crystals with a cube-on-cube epitaxial relationship with the substrate: (001)<inf>TiMgN</inf> || (001)<inf>MgO</inf> and [100]<inf>TiMgN</inf> || [100]<inf>MgO</inf>. A 275-nm-thick Ti<inf>0.5</inf>Mg<inf>0.5</inf>N layer is fully relaxed and exhibits a 002 ω-rocking curve width Γ<inf>ω</inf> = 0.73°, while a 36-nm-thick layer is fully strained and has a Γ<inf>ω</inf> = 0.49°. These results indicate a thickness-dependent strain state which suggests a critical thickness for misfit dislocation nucleation and glide which is between 36 and 275 nm. A measured negative temperature coefficient of resistivity in combination with a low optical absorption coefficient of 0.25 × 10<sup>5</sup> cm<sup>−1</sup> for λ = 740 nm, and a vanishing density of states at the Fermi level measured by x-ray photoelectron spectroscopy support the prediction that Ti<inf>0.5</inf>Mg<inf>0.5</inf>N is a semiconductor.","PeriodicalId":292669,"journal":{"name":"2018 IEEE Nanotechnology Symposium (ANTS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Nanotechnology Symposium (ANTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOTECH.2018.8653564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Ti0.5Mg0.5N has recently been predicted to be a semiconductor with a 1.3 eV band gap and promising properties for thermoelectric and plasmonic devices. As a first step towards experimental validation, epitaxial Ti0.5Mg0.5N(001) layers are deposited on MgO(001) by reactive magnetron co-sputtering from titanium and magnesium targets at 600 °C in pure N2 atmospheres. X-ray diffraction ω-2θ scans, ω-rocking curves, φ-scans, and high resolution reciprocal space maps show that Ti0.5Mg0.5N alloys form a pseudobinary rocksalt structure and are single crystals with a cube-on-cube epitaxial relationship with the substrate: (001)TiMgN || (001)MgO and [100]TiMgN || [100]MgO. A 275-nm-thick Ti0.5Mg0.5N layer is fully relaxed and exhibits a 002 ω-rocking curve width Γω = 0.73°, while a 36-nm-thick layer is fully strained and has a Γω = 0.49°. These results indicate a thickness-dependent strain state which suggests a critical thickness for misfit dislocation nucleation and glide which is between 36 and 275 nm. A measured negative temperature coefficient of resistivity in combination with a low optical absorption coefficient of 0.25 × 105 cm−1 for λ = 740 nm, and a vanishing density of states at the Fermi level measured by x-ray photoelectron spectroscopy support the prediction that Ti0.5Mg0.5N is a semiconductor.
新型半导体Ti0.5Mg0.5N(001)
Ti0.5Mg0.5N最近被预测为具有1.3 eV带隙的半导体,具有热电和等离子体器件的良好性能。作为实验验证的第一步,在纯N2气氛下,在600°C下,用反应磁控共溅射法将钛和镁靶沉积在MgO(001)上。x射线衍射ω-2θ扫描、ω-摇摆曲线、φ-扫描和高分辨率互易空间图表明,Ti0.5Mg0.5N合金形成伪二元岩盐结构,为单晶,与衬底呈立方体对立方体外延关系:(001)TiMgN || (001)MgO和[100]TiMgN || [100]MgO。275 nm厚的Ti0.5Mg0.5N层是完全松弛的,其002 ω-摇摆曲线宽度Γω = 0.73°,而36 nm厚的Ti0.5Mg0.5N层是完全应变的,其摆动曲线宽度Γω = 0.49°。这些结果表明了厚度依赖的应变状态,这表明错配位错成核和滑动的临界厚度在36 ~ 275 nm之间。测量到的负温度电阻率系数、λ = 740 nm时的低光吸收系数(0.25 × 105 cm−1)以及x射线光电子能谱测量到的费米能级态消失密度支持了Ti0.5Mg0.5N是半导体的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信