Метод адаптації експоненціального фільтра Брауна із використанням методу найменших квадратів

B. Boriak, A. Silvestrov, V. V. Lutsio
{"title":"Метод адаптації експоненціального фільтра Брауна із використанням методу найменших квадратів","authors":"B. Boriak, A. Silvestrov, V. V. Lutsio","doi":"10.18372/1990-5548.54.12306","DOIUrl":null,"url":null,"abstract":"Proposed structure of the filtering algorithm gives an opportunity to avoid some of disadvantages of exponential smoothing. The main aim of proposed algorithm is to estimate filtration quality and get an ability to change smoothing factor during the work of the system. We used the method of least squares to estimate the difference between smoothed signal and signal that was built from filtered signal got by its approximation. This method might be used in the case if the trajectory of the tracking signal is not changing during the estimating process or it might be changed inconsiderably. This data processing algorithm can be used as filtering and forecasting system and integrated in systems with lags.","PeriodicalId":408752,"journal":{"name":"Egyptian Computer Science Journal","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Computer Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18372/1990-5548.54.12306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Proposed structure of the filtering algorithm gives an opportunity to avoid some of disadvantages of exponential smoothing. The main aim of proposed algorithm is to estimate filtration quality and get an ability to change smoothing factor during the work of the system. We used the method of least squares to estimate the difference between smoothed signal and signal that was built from filtered signal got by its approximation. This method might be used in the case if the trajectory of the tracking signal is not changing during the estimating process or it might be changed inconsiderably. This data processing algorithm can be used as filtering and forecasting system and integrated in systems with lags.
所提出的滤波算法结构避免了指数平滑的一些缺点。该算法的主要目的是估计过滤质量,并获得在系统工作过程中改变平滑因子的能力。我们用最小二乘法来估计平滑信号和由滤波信号近似得到的信号之间的差值。该方法适用于跟踪信号轨迹在估计过程中没有变化或变化不大的情况。该数据处理算法可以作为滤波和预测系统,也可以集成到有滞后的系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信