Ruidi Chen, I. Paschalidis
{"title":"Distributionally Robust Learning","authors":"Ruidi Chen, I. Paschalidis","doi":"10.1561/2400000026","DOIUrl":null,"url":null,"abstract":"This monograph develops a comprehensive statistical learning framework that is robust to (distributional) perturbations in the data using Distributionally Robust Optimization (DRO) under the Wasserstein metric. Beginning with fundamental properties of the Wasserstein metric and the DRO formulation, we explore duality to arrive at tractable formulations and develop finite-sample, as well as asymptotic, performance guarantees. We consider a series of learning problems, including (i) distributionally robust linear regression; (ii) distributionally robust regression with group structure in the predictors; (iii) distributionally robust multi-output regression and multiclass classification, (iv) optimal decision making that combines distributionally robust regression with nearest-neighbor estimation; (v) distributionally robust semi-supervised learning, and (vi) distributionally robust reinforcement learning. A tractable DRO relaxation for each problem is being derived, establishing a connection between robustness and regularization, and obtaining bounds on the prediction and estimation errors of the solution. Beyond theory, we include numerical experiments and case studies using synthetic and real data. The real data experiments are all associated with various health informatics problems, an application area which provided the initial impetus for this work. Ruidi Chen and Ioannis Ch. Paschalidis (2020), “Distributionally Robust Learning”, Foundations and Trends © in Optimization: Vol. 4, No. 1–2, pp 1–243. DOI: 10.1561/2400000026. Full text available at: http://dx.doi.org/10.1561/2400000026","PeriodicalId":329329,"journal":{"name":"Found. Trends Optim.","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Found. Trends Optim.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/2400000026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38
分布鲁棒学习
本专著开发了一个全面的统计学习框架,该框架在Wasserstein度量下使用分布鲁棒优化(DRO)对数据中的(分布)扰动具有鲁棒性。从Wasserstein度量和DRO公式的基本性质开始,我们探索对偶性以达到可处理的公式,并开发有限样本以及渐近性能保证。我们考虑了一系列的学习问题,包括(i)分布鲁棒线性回归;(ii)具有群体结构的分布稳健性回归预测;(3)分布鲁棒多输出回归与多类分类;(4)分布鲁棒回归与最近邻估计相结合的最优决策;(v)分布鲁棒半监督学习,(vi)分布鲁棒强化学习。为每个问题推导了一个易于处理的DRO松弛,建立了鲁棒性和正则化之间的联系,并获得了解的预测和估计误差的界。除了理论之外,我们还包括使用合成和真实数据的数值实验和案例研究。真实的数据实验都与各种健康信息学问题有关,这是一个应用领域,为这项工作提供了最初的动力。Ruidi Chen和Ioannis Ch. Paschalidis(2020),“分布式稳健学习”,基础与趋势©in Optimization: Vol. 4, No. 1-2, pp 1-243。DOI: 10.1561 / 2400000026。全文可在:http://dx.doi.org/10.1561/2400000026
本文章由计算机程序翻译,如有差异,请以英文原文为准。