Analysis of ECG Image File Encryption using ECDH and AES-GCM Algorithm

P. Oktivasari, Maria Agustin, Rahmat Esa Mohammad Akbar, A. Kurniawan, Ayu Rosyida Zain, Fachroni Arbi Murad
{"title":"Analysis of ECG Image File Encryption using ECDH and AES-GCM Algorithm","authors":"P. Oktivasari, Maria Agustin, Rahmat Esa Mohammad Akbar, A. Kurniawan, Ayu Rosyida Zain, Fachroni Arbi Murad","doi":"10.1109/IWBIS56557.2022.9924954","DOIUrl":null,"url":null,"abstract":"Image data is used in various fields, including the health sector. One of the image data in the health sector is an electrocardiogram (ECG). The ECG contains the identifying information of a person which must be guarded and secured. ECG image data security can be done by encrypting image data using encryption algorithms. The encryption algorithms used in this thesis are ECDH and AES-GCM. ECDH is used to generate key pairs which are then used as keys for AES-GCM encryption and decryption. The encryption and decryption process are carried out in the python programming language. The results of the encryption time and decryption time increase because of the dimensions and size of the ECG image file. The nonce value and authentication tag are checked to be able to perform the decryption process. The histogram test results prove the uniformity of pixels in the encrypted ECG image file. PSNR and SSIM test results prove the difference between the initial and encrypted ECG image files. The results of the NIST Statistical Test Suite test prove that the algorithm used produces random output so that it can be used to secure ECG image files.","PeriodicalId":348371,"journal":{"name":"2022 7th International Workshop on Big Data and Information Security (IWBIS)","volume":"361 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Workshop on Big Data and Information Security (IWBIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWBIS56557.2022.9924954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Image data is used in various fields, including the health sector. One of the image data in the health sector is an electrocardiogram (ECG). The ECG contains the identifying information of a person which must be guarded and secured. ECG image data security can be done by encrypting image data using encryption algorithms. The encryption algorithms used in this thesis are ECDH and AES-GCM. ECDH is used to generate key pairs which are then used as keys for AES-GCM encryption and decryption. The encryption and decryption process are carried out in the python programming language. The results of the encryption time and decryption time increase because of the dimensions and size of the ECG image file. The nonce value and authentication tag are checked to be able to perform the decryption process. The histogram test results prove the uniformity of pixels in the encrypted ECG image file. PSNR and SSIM test results prove the difference between the initial and encrypted ECG image files. The results of the NIST Statistical Test Suite test prove that the algorithm used produces random output so that it can be used to secure ECG image files.
基于ECDH和AES-GCM算法的心电图像文件加密分析
图像数据用于各个领域,包括卫生部门。卫生部门的图像数据之一是心电图(ECG)。心电图包含一个人的身份信息,必须加以保护和保护。心电图像数据的安全可以通过使用加密算法对图像数据进行加密来实现。本文使用的加密算法是ECDH和AES-GCM。ECDH用于生成密钥对,然后将密钥对用作AES-GCM加密和解密的密钥。加密和解密过程是用python编程语言进行的。结果表明,由于心电图像文件的尺寸和大小,加密时间和解密时间都增加了。检查nonce值和身份验证标记,以便能够执行解密过程。直方图测试结果证明了加密心电图像文件中像素的均匀性。PSNR和SSIM测试结果证明了初始心电图像文件与加密心电图像文件的差异。NIST统计测试套件测试的结果证明,所使用的算法产生随机输出,因此可以用于保护心电图像文件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信