{"title":"What is nature's error criterion?","authors":"E. Guillemin","doi":"10.1109/TCT.1954.6373361","DOIUrl":null,"url":null,"abstract":"It is well known that the Fourier series is not the only trigonometric polynomial that may be used to represent a periodic function. It is a polynomial with the property that the mean square error between a partial sum and the given function is a minimum; that is to say, it approximates the given function so as to make the mean square error a minimum. This error criterion is only one of many that could be stipulated as fixing the manner in which the polynomial approximates the given function, and from a practical standpoint it isn't even a good one for many applications because it suffers from the Gibbs phenomenon. A Tschebyscheff-like approximation or the one inherent in the Cesaro sum which converges uniformly even at points of discontinuity may be preferable in many cases.","PeriodicalId":232856,"journal":{"name":"IRE Transactions on Circuit Theory","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1954-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IRE Transactions on Circuit Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCT.1954.6373361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
It is well known that the Fourier series is not the only trigonometric polynomial that may be used to represent a periodic function. It is a polynomial with the property that the mean square error between a partial sum and the given function is a minimum; that is to say, it approximates the given function so as to make the mean square error a minimum. This error criterion is only one of many that could be stipulated as fixing the manner in which the polynomial approximates the given function, and from a practical standpoint it isn't even a good one for many applications because it suffers from the Gibbs phenomenon. A Tschebyscheff-like approximation or the one inherent in the Cesaro sum which converges uniformly even at points of discontinuity may be preferable in many cases.