Do we really have to consider covariance matrices for image features?

Yasushi Kanazawa, K. Kanatani
{"title":"Do we really have to consider covariance matrices for image features?","authors":"Yasushi Kanazawa, K. Kanatani","doi":"10.1109/ICCV.2001.937640","DOIUrl":null,"url":null,"abstract":"Many studies have been made in the past for optimization using covariance matrices of feature points. We first describe how to compute the covariance matrix of a feature point from the gray levels by integrating existing methods. Then, we experimentally examine if thus computed covariance matrices really reflect the accuracy of the feature points. To test this, we do subpixel template matching and compute the homography and the fundamental matrix. Our conclusion is rather surprising, pointing out important elements often overlooked.","PeriodicalId":429441,"journal":{"name":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2001.937640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103

Abstract

Many studies have been made in the past for optimization using covariance matrices of feature points. We first describe how to compute the covariance matrix of a feature point from the gray levels by integrating existing methods. Then, we experimentally examine if thus computed covariance matrices really reflect the accuracy of the feature points. To test this, we do subpixel template matching and compute the homography and the fundamental matrix. Our conclusion is rather surprising, pointing out important elements often overlooked.
我们真的需要考虑图像特征的协方差矩阵吗?
利用特征点的协方差矩阵进行优化,已有很多研究。首先介绍了如何综合现有方法从灰度值计算特征点的协方差矩阵。然后,我们通过实验检验这样计算的协方差矩阵是否真的反映了特征点的准确性。为了验证这一点,我们进行了亚像素模板匹配,并计算了单应性和基本矩阵。我们的结论相当惊人,指出了经常被忽视的重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信