A Novel Augmented Reality Approach in Oral and Maxillofacial Surgery: Super-Imposition Based on Modified Rigid and Non-Rigid Iterative Closest Point

Sam Manohar, A. Alsadoon, P.W.C. Prasa, R. M. Salah, Angelika Maag, Yahini Murugesan
{"title":"A Novel Augmented Reality Approach in Oral and Maxillofacial Surgery: Super-Imposition Based on Modified Rigid and Non-Rigid Iterative Closest Point","authors":"Sam Manohar, A. Alsadoon, P.W.C. Prasa, R. M. Salah, Angelika Maag, Yahini Murugesan","doi":"10.1109/CITISIA50690.2020.9371785","DOIUrl":null,"url":null,"abstract":"Background: This paper aim to improve the accuracy of super-imposition and processing time during Oral and Maxillofacial surgery. Methodology: The proposed system consists of Enhanced Tracking Learning Detection (TLD) enhance by an occlusion removal algorithm to remove occlusion in the region of interest. In addition, we propose a Modified Rigid and Non-Rigid Iterative Closest Point (MRaNRICP) for pose refinement. Moreover, this proposed MRaNRICP having a new error metric Boolean function to dictate the Iterative Closest Point (ICP)’s stopping condition. Results: The proposed system using a new error metric being defined as a new MRaNRICP and it gave overlay error from 0.22 - 0.29mm and processing time of 10 – 13 frames per second. Similarly, current system achieved the overlay error from 0.23 - 0.35mm and processing time of 8 – 12 frames per second. Conclusion: This research should reduce the computation time of the TLD algorithm and improve the accuracy of it.","PeriodicalId":145272,"journal":{"name":"2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CITISIA50690.2020.9371785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Background: This paper aim to improve the accuracy of super-imposition and processing time during Oral and Maxillofacial surgery. Methodology: The proposed system consists of Enhanced Tracking Learning Detection (TLD) enhance by an occlusion removal algorithm to remove occlusion in the region of interest. In addition, we propose a Modified Rigid and Non-Rigid Iterative Closest Point (MRaNRICP) for pose refinement. Moreover, this proposed MRaNRICP having a new error metric Boolean function to dictate the Iterative Closest Point (ICP)’s stopping condition. Results: The proposed system using a new error metric being defined as a new MRaNRICP and it gave overlay error from 0.22 - 0.29mm and processing time of 10 – 13 frames per second. Similarly, current system achieved the overlay error from 0.23 - 0.35mm and processing time of 8 – 12 frames per second. Conclusion: This research should reduce the computation time of the TLD algorithm and improve the accuracy of it.
一种新的增强现实方法在口腔颌面外科:基于改进的刚性和非刚性迭代最近点的叠加叠加
背景:本文旨在提高口腔颌面外科手术的叠加精度和处理时间。方法:提出的系统包括增强跟踪学习检测(TLD),通过遮挡去除算法增强,以去除感兴趣区域的遮挡。此外,我们还提出了一种改进的刚性和非刚性迭代最近点(MRaNRICP)来进行姿态优化。此外,本文还提出了一个新的误差度量布尔函数来指示迭代最近点(ICP)的停止条件。结果:提出的系统使用新的误差度量被定义为新的MRaNRICP,它给出了0.22 - 0.29mm的覆盖误差和10 - 13帧/秒的处理时间。同样,现有系统的覆盖误差为0.23 ~ 0.35mm,处理时间为8 ~ 12帧/秒。结论:本研究减少了TLD算法的计算时间,提高了算法的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信