Fatemeh Zaremehrjardi, Athar Omidi, Cristina D. Sciortino, Ryan E. R. Reid, Ryan Lukeman, J. Hughes, O. Soufan
{"title":"Discovering Missing Edges in Drug-Protein Networks: Repurposing Drugs for SARS-CoV-2","authors":"Fatemeh Zaremehrjardi, Athar Omidi, Cristina D. Sciortino, Ryan E. R. Reid, Ryan Lukeman, J. Hughes, O. Soufan","doi":"10.1109/CIBCB49929.2021.9562855","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic, caused by the SARS-CoV-2 virus, led to a global health crisis, with more than 157 million cases confirmed infected by May 2021. Effective medication is desperately needed. Predicting drug-target interaction (DTI) is an important step to discover novel uses of chemical structures. Here, we develop a pipeline to predict novel DTIs based on the proteins of the coronavirus. Different datasets (human/SARS-CoV-2 Protein-Protein interaction (PPI), Drug-Drug similarity (DD sim), and DTIs) are used and combined. After mapping all datasets onto a heterogeneous graph, path-related features are extracted. We then applied various machine learning (ML) algorithms to model our dataset and predict novel DTIs among unlabeled pairs. Possible drugs identified by the models with a high frequency are reported. In addition, evidence of the efficiency of the predicted medicines by the models against COVID-19 are presented. The proposed model can then be generalized to contain other features that provide a context to predict medicine for different diseases.","PeriodicalId":163387,"journal":{"name":"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"220 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB49929.2021.9562855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, led to a global health crisis, with more than 157 million cases confirmed infected by May 2021. Effective medication is desperately needed. Predicting drug-target interaction (DTI) is an important step to discover novel uses of chemical structures. Here, we develop a pipeline to predict novel DTIs based on the proteins of the coronavirus. Different datasets (human/SARS-CoV-2 Protein-Protein interaction (PPI), Drug-Drug similarity (DD sim), and DTIs) are used and combined. After mapping all datasets onto a heterogeneous graph, path-related features are extracted. We then applied various machine learning (ML) algorithms to model our dataset and predict novel DTIs among unlabeled pairs. Possible drugs identified by the models with a high frequency are reported. In addition, evidence of the efficiency of the predicted medicines by the models against COVID-19 are presented. The proposed model can then be generalized to contain other features that provide a context to predict medicine for different diseases.