Classical conditioning implementation with realneuron networks

L.D. Erasmus
{"title":"Classical conditioning implementation with realneuron networks","authors":"L.D. Erasmus","doi":"10.1109/AFRCON.2007.4401545","DOIUrl":null,"url":null,"abstract":"This paper presents a contribution to computational modelling of associative learning through classical conditioning as known in the psychology. A seven-neuron RealNeuron network model, derived from neurobiological descriptions, and its performance is presented, using multiple resolution levels with configurable modular elements at each resolution level. RealNeurons are based on the structure of a biological neuron. With the RealNeuron's simple calculations, simulations on personal computers are possible and the simulated states on the highest, intermediate and lowest levels of resolution can be calculated using standard spreadsheet software. Further, a synthesis of a complex system, using an eleven-neuron RealNeuron network and integrates two classical-conditioning functions that can adapt to a changing poison and food environment, and its performance is presented.","PeriodicalId":112129,"journal":{"name":"AFRICON 2007","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AFRICON 2007","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFRCON.2007.4401545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a contribution to computational modelling of associative learning through classical conditioning as known in the psychology. A seven-neuron RealNeuron network model, derived from neurobiological descriptions, and its performance is presented, using multiple resolution levels with configurable modular elements at each resolution level. RealNeurons are based on the structure of a biological neuron. With the RealNeuron's simple calculations, simulations on personal computers are possible and the simulated states on the highest, intermediate and lowest levels of resolution can be calculated using standard spreadsheet software. Further, a synthesis of a complex system, using an eleven-neuron RealNeuron network and integrates two classical-conditioning functions that can adapt to a changing poison and food environment, and its performance is presented.
用realneuron网络实现经典条件反射
本文提出了通过经典条件作用对联想学习的计算建模的贡献,这在心理学中是众所周知的。提出了一种基于神经生物学描述的七神经元RealNeuron网络模型及其性能,该模型使用多个分辨率级别,每个分辨率级别具有可配置的模块元素。realneuron基于生物神经元的结构。通过RealNeuron的简单计算,可以在个人电脑上进行模拟,并且可以使用标准电子表格软件计算最高,中间和最低分辨率水平的模拟状态。此外,本文还介绍了一个复杂系统的合成,该系统使用11个神经元的RealNeuron网络,并集成了两个经典的条件反射函数,可以适应不断变化的毒物和食物环境,并展示了其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信