Visual Object Localization in Image Collections

Yanyun Qu, Han Liu
{"title":"Visual Object Localization in Image Collections","authors":"Yanyun Qu, Han Liu","doi":"10.1109/ICIG.2011.123","DOIUrl":null,"url":null,"abstract":"The research of object localization is active in the field of visual object category. In this paper, we focus on object localization in a given special category dataset. We propose to exploit the context aware category discovery for object localization without any labeled examples. Firstly, the image is segmented based on a multiple segmentation algorithm. Secondly, these generated regions are clustered by spectral clustering method to find the category pattern based on the context of the dataset and the saliency. Thirdly, the object is localized based on the weakly supervised learning algorithm. To justify the effectiveness of the proposed method, the detection precision is employed to evaluate the performance of our approach. The experimental results demonstrate that our approach is promising in object localization with unsupervised learning method.","PeriodicalId":277974,"journal":{"name":"2011 Sixth International Conference on Image and Graphics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2011.123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The research of object localization is active in the field of visual object category. In this paper, we focus on object localization in a given special category dataset. We propose to exploit the context aware category discovery for object localization without any labeled examples. Firstly, the image is segmented based on a multiple segmentation algorithm. Secondly, these generated regions are clustered by spectral clustering method to find the category pattern based on the context of the dataset and the saliency. Thirdly, the object is localized based on the weakly supervised learning algorithm. To justify the effectiveness of the proposed method, the detection precision is employed to evaluate the performance of our approach. The experimental results demonstrate that our approach is promising in object localization with unsupervised learning method.
图像集合中的可视对象定位
对象定位是视觉对象分类领域的研究热点。在本文中,我们主要研究在给定的特殊类别数据集中的目标定位问题。我们建议利用上下文感知的类别发现来进行对象定位,而不需要任何标记的例子。首先,采用多重分割算法对图像进行分割;其次,根据数据集的上下文和显著性,采用谱聚类方法对生成的区域进行聚类,找到类别模式;第三,基于弱监督学习算法对目标进行定位。为了验证所提出方法的有效性,采用检测精度来评估我们的方法的性能。实验结果表明,该方法在无监督学习的目标定位中具有较好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信