Unsupervised and supervised machine learning for performance improvement of NFT optical transmission

O. Kotlyar, M. Pankratova, M. Kamalian, A. Vasylchenkova, J. Prilepsky, S. Turitsyn
{"title":"Unsupervised and supervised machine learning for performance improvement of NFT optical transmission","authors":"O. Kotlyar, M. Pankratova, M. Kamalian, A. Vasylchenkova, J. Prilepsky, S. Turitsyn","doi":"10.1109/BICOP.2018.8658274","DOIUrl":null,"url":null,"abstract":"We apply both the unsupervised and supervised machine learning (ML) methods, in particular, the k-means clustering and support vector machine (SVM) to improve the performance of the optical communication system based on the nonlinear Fourier transform (NFT). The NFT system employs the continuous NFT spectrum part to carry data up to 1000 km using the 16-QAM OFDM modulation. We classify the performance of the system in terms of BER versus signal power dependence. We show that the NFT system performance can be improved considerably by means of the ML techniques and that the more advanced SVM method typically outperforms the k-means clustering.","PeriodicalId":145258,"journal":{"name":"2018 IEEE British and Irish Conference on Optics and Photonics (BICOP)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE British and Irish Conference on Optics and Photonics (BICOP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICOP.2018.8658274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We apply both the unsupervised and supervised machine learning (ML) methods, in particular, the k-means clustering and support vector machine (SVM) to improve the performance of the optical communication system based on the nonlinear Fourier transform (NFT). The NFT system employs the continuous NFT spectrum part to carry data up to 1000 km using the 16-QAM OFDM modulation. We classify the performance of the system in terms of BER versus signal power dependence. We show that the NFT system performance can be improved considerably by means of the ML techniques and that the more advanced SVM method typically outperforms the k-means clustering.
用于改进NFT光传输性能的无监督和有监督机器学习
我们应用无监督和有监督机器学习(ML)方法,特别是k-means聚类和支持向量机(SVM)来提高基于非线性傅里叶变换(NFT)的光通信系统的性能。NFT系统利用连续的NFT频谱部分,采用16-QAM OFDM调制,将数据传输至1000公里。我们根据误码率与信号功率的依赖关系对系统的性能进行分类。我们表明,通过ML技术可以大大提高NFT系统的性能,并且更先进的SVM方法通常优于k-means聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信