An error analysis on locally linear embedding

Peng Zhang, Chunbo Fan, Yuanyuan Ren, Zhou Sun
{"title":"An error analysis on locally linear embedding","authors":"Peng Zhang, Chunbo Fan, Yuanyuan Ren, Zhou Sun","doi":"10.1109/GrC.2013.6740451","DOIUrl":null,"url":null,"abstract":"Locally linear embedding (LLE) has been proved to an efficient tool for nonlinear dimensionality reduction. It is an unsupervised learning method with various attractive properties, such as few parameters to select and non prone to local minima. However, few works have been done on analyzing learning errors for LLE. In this paper, we conduct an error analysis on the LLE method and show that under what conditions LLE would be able to correctly discover the underlying manifold structure. Besides, we also present reconstruction errors between the local weights in the embedding and the ambient space, which is crucial to the success of LLE.","PeriodicalId":415445,"journal":{"name":"2013 IEEE International Conference on Granular Computing (GrC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Granular Computing (GrC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GrC.2013.6740451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Locally linear embedding (LLE) has been proved to an efficient tool for nonlinear dimensionality reduction. It is an unsupervised learning method with various attractive properties, such as few parameters to select and non prone to local minima. However, few works have been done on analyzing learning errors for LLE. In this paper, we conduct an error analysis on the LLE method and show that under what conditions LLE would be able to correctly discover the underlying manifold structure. Besides, we also present reconstruction errors between the local weights in the embedding and the ambient space, which is crucial to the success of LLE.
局部线性嵌入的误差分析
局部线性嵌入(LLE)是一种有效的非线性降维方法。它是一种无监督学习方法,具有参数选择少、不容易出现局部极小值等优点。然而,关于LLE学习误差分析的研究却很少。在本文中,我们对LLE方法进行了误差分析,并说明了在什么条件下LLE能够正确地发现底层流形结构。此外,我们还提出了嵌入中的局部权重与环境空间之间的重构误差,这对LLE的成功至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信