Decentralized Federated Learning for Nonintrusive Load Monitoring in Smart Energy Communities

A. Giuseppi, S. Manfredi, Danilo Menegatti, A. Pietrabissa, Cecilia Poli
{"title":"Decentralized Federated Learning for Nonintrusive Load Monitoring in Smart Energy Communities","authors":"A. Giuseppi, S. Manfredi, Danilo Menegatti, A. Pietrabissa, Cecilia Poli","doi":"10.1109/MED54222.2022.9837291","DOIUrl":null,"url":null,"abstract":"Federated Learning is a distributed learning solution for machine learning problems without the need of collecting the available data in a single centralized data centre. With the standard FL approaches, model training is performed locally and a centralized server collects and elaborates the trainable parameters of the local models: even if data are not shared, the presence of the centralized server still rises trust and security issues. In this work, we introduce the Decentralized Federated Learning (DECFEDAVG) algorithm, which aims at achieving complete decentralization by the lack of a coordination server, and compare its performance against the original federated learning algorithm Federated Averaging (FEDAVG) over the Nonintrusive Load Monitoring problem.","PeriodicalId":354557,"journal":{"name":"2022 30th Mediterranean Conference on Control and Automation (MED)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED54222.2022.9837291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Federated Learning is a distributed learning solution for machine learning problems without the need of collecting the available data in a single centralized data centre. With the standard FL approaches, model training is performed locally and a centralized server collects and elaborates the trainable parameters of the local models: even if data are not shared, the presence of the centralized server still rises trust and security issues. In this work, we introduce the Decentralized Federated Learning (DECFEDAVG) algorithm, which aims at achieving complete decentralization by the lack of a coordination server, and compare its performance against the original federated learning algorithm Federated Averaging (FEDAVG) over the Nonintrusive Load Monitoring problem.
智能能源社区非侵入式负荷监测的分散联邦学习
联邦学习是一种用于机器学习问题的分布式学习解决方案,无需在单个集中式数据中心收集可用数据。使用标准的FL方法,模型训练在本地进行,中央服务器收集并详细说明本地模型的可训练参数:即使数据不共享,中央服务器的存在仍然会引起信任和安全问题。在这项工作中,我们引入了去中心化联邦学习(DECFEDAVG)算法,该算法旨在通过缺乏协调服务器来实现完全的去中心化,并将其性能与原始联邦学习算法联邦平均(FEDAVG)在非侵入性负载监控问题上的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信