Planning using online evolutionary overfitting

Spyridon Samothrakis, S. Lucas
{"title":"Planning using online evolutionary overfitting","authors":"Spyridon Samothrakis, S. Lucas","doi":"10.1109/UKCI.2010.5625569","DOIUrl":null,"url":null,"abstract":"Biological systems tend to perform a range of tasks of extreme variability with extraordinary efficiency. It has been argued that a plausible scenario for achieving such versatility is explicitly learning a forward model. We perform a set of experiments using the original and a modified version of a classic reinforcement learning task, the mountain car problem, using a number of agents that encode both a direct and an abstracted version of a forward model. The results suggest that superior performance can be achieved if the forward model can be exploited in real-time by an agent that has already internalised a model-free control function.","PeriodicalId":403291,"journal":{"name":"2010 UK Workshop on Computational Intelligence (UKCI)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2010.5625569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Biological systems tend to perform a range of tasks of extreme variability with extraordinary efficiency. It has been argued that a plausible scenario for achieving such versatility is explicitly learning a forward model. We perform a set of experiments using the original and a modified version of a classic reinforcement learning task, the mountain car problem, using a number of agents that encode both a direct and an abstracted version of a forward model. The results suggest that superior performance can be achieved if the forward model can be exploited in real-time by an agent that has already internalised a model-free control function.
利用在线进化过拟合进行规划
生物系统倾向于以非凡的效率执行一系列极端可变性的任务。有人认为,实现这种多功能性的合理方案是明确地学习正向模型。我们使用经典强化学习任务(山地车问题)的原始版本和修改版本进行了一组实验,使用许多代理对前向模型的直接版本和抽象版本进行编码。结果表明,如果一个已经内化了无模型控制功能的智能体可以实时地利用前向模型,则可以获得更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信