{"title":"Extended Collaborative Filtering Recommendation System with Adaptive KNN and SVD","authors":"Sagedur Rahman","doi":"10.31033/ijemr.13.4.14","DOIUrl":null,"url":null,"abstract":"In recent years, recommendation systems have gained significant importance due to the vast amount of digital content available on various online platforms. Collaborative filtering is a widely adopted approach in recommendation systems, leveraging user-item interactions to make personalized predictions. However, traditional collaborative filtering methods face challenges such as the cold-start problem and data sparsity. To address these issues, researchers have proposed advanced techniques, including Adaptive KNN-Based and SVD-Based Extended Collaborative Filtering. This paper provides a comprehensive review of these two recommendation systems, discussing their underlying principles, advantages, and limitations. Furthermore, we explore recent research advancements and real-world applications, providing insights into the potential future developments in this field.","PeriodicalId":421022,"journal":{"name":"International Journal of Engineering and Management Research","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Management Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31033/ijemr.13.4.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, recommendation systems have gained significant importance due to the vast amount of digital content available on various online platforms. Collaborative filtering is a widely adopted approach in recommendation systems, leveraging user-item interactions to make personalized predictions. However, traditional collaborative filtering methods face challenges such as the cold-start problem and data sparsity. To address these issues, researchers have proposed advanced techniques, including Adaptive KNN-Based and SVD-Based Extended Collaborative Filtering. This paper provides a comprehensive review of these two recommendation systems, discussing their underlying principles, advantages, and limitations. Furthermore, we explore recent research advancements and real-world applications, providing insights into the potential future developments in this field.