Use of Spatial Information via Markov and Conditional Random Fields in Histopathological Images

S. Jamal, G. Bilgin
{"title":"Use of Spatial Information via Markov and Conditional Random Fields in Histopathological Images","authors":"S. Jamal, G. Bilgin","doi":"10.1109/TSP.2019.8769093","DOIUrl":null,"url":null,"abstract":"This study aims to increase the segmentation accuracy by using spatial information in biomedical histopathological images. The first step in the study is to provide pre-segmentation of H & E stained images using supervised learning methods, which are k-nearest neighbors algorithm, support vector machine and random forest. In order to build necessary classifier models, several training sets are created from intracellular and extra-cellular image patches extracted from histopathological images. As a two-class classification approach, supervised learning based segmentation are applied to test images in the evaluations. Spatial information should be used to improve the segmentation accuracy of output image obtained in the classification step. In the second step of the study, Markov and conditional random fields methods are utilized to exploit spatial information in histopathological images as a post processing approach. Comparative results prove that the use of spatial information via Markov and conditional random fields can be used to improve the segmentation accuracy of histopathological images.","PeriodicalId":399087,"journal":{"name":"2019 42nd International Conference on Telecommunications and Signal Processing (TSP)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 42nd International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2019.8769093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This study aims to increase the segmentation accuracy by using spatial information in biomedical histopathological images. The first step in the study is to provide pre-segmentation of H & E stained images using supervised learning methods, which are k-nearest neighbors algorithm, support vector machine and random forest. In order to build necessary classifier models, several training sets are created from intracellular and extra-cellular image patches extracted from histopathological images. As a two-class classification approach, supervised learning based segmentation are applied to test images in the evaluations. Spatial information should be used to improve the segmentation accuracy of output image obtained in the classification step. In the second step of the study, Markov and conditional random fields methods are utilized to exploit spatial information in histopathological images as a post processing approach. Comparative results prove that the use of spatial information via Markov and conditional random fields can be used to improve the segmentation accuracy of histopathological images.
利用空间信息通过马尔可夫和条件随机场在组织病理图像
本研究旨在利用生物医学组织病理图像的空间信息提高分割精度。研究的第一步是使用监督学习方法,即k近邻算法、支持向量机和随机森林,对H & E染色图像进行预分割。为了建立必要的分类器模型,从从组织病理图像中提取的细胞内和细胞外图像斑块中创建了几个训练集。作为一种两类分类方法,基于监督学习的分割被应用于评估中的测试图像。在分类步骤中,需要利用空间信息来提高输出图像的分割精度。在研究的第二步,利用马尔可夫和条件随机场方法来利用组织病理学图像中的空间信息作为后处理方法。对比结果表明,利用空间信息的马尔可夫随机场和条件随机场可以提高组织病理图像的分割精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信