A robust observer designed for vehicle lateral motion estimation

L. Li, F.-Y. Wang, Qunzhi Zhou
{"title":"A robust observer designed for vehicle lateral motion estimation","authors":"L. Li, F.-Y. Wang, Qunzhi Zhou","doi":"10.1109/IVS.2005.1505139","DOIUrl":null,"url":null,"abstract":"Lateral control of vehicles on automated highways often requires accurate estimation of sideslip angle, yaw rate and lateral velocity, which are difficult to measure directly. Thus, several observers (virtual sensors) were developed in the last decade. In order to solve the unhandled estimation inaccuracy problem caused by system parameter variation and/or model uncertainty, a robust observer has been proposed in this paper. It maintains the good disturbance rejection property that derived form previous research, and simultaneously provides acceptable tolerance to model variance and uncertainty. Specially, effects of displacements of sensory, dynamics variance caused by mass/velocity/friction-coefficients change or nonlinear characteristics are studied. Simulations demonstrate the usefulness of the proposed observer.","PeriodicalId":386189,"journal":{"name":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2005.1505139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Lateral control of vehicles on automated highways often requires accurate estimation of sideslip angle, yaw rate and lateral velocity, which are difficult to measure directly. Thus, several observers (virtual sensors) were developed in the last decade. In order to solve the unhandled estimation inaccuracy problem caused by system parameter variation and/or model uncertainty, a robust observer has been proposed in this paper. It maintains the good disturbance rejection property that derived form previous research, and simultaneously provides acceptable tolerance to model variance and uncertainty. Specially, effects of displacements of sensory, dynamics variance caused by mass/velocity/friction-coefficients change or nonlinear characteristics are studied. Simulations demonstrate the usefulness of the proposed observer.
一种用于车辆横向运动估计的鲁棒观测器
自动公路上车辆的横向控制往往需要准确估计侧滑角、横摆角速度和横向速度,而这些都是难以直接测量的。因此,在过去的十年中,一些观察者(虚拟传感器)被开发出来。为了解决由于系统参数变化和/或模型不确定性引起的估计不准确问题,本文提出了一种鲁棒观测器。它保持了从以往研究中得到的良好的抗干扰性,同时对模型方差和不确定性提供了可接受的容忍度。特别地,研究了由质量/速度/摩擦系数变化或非线性特性引起的感官位移、动力学变化的影响。仿真结果表明了该观测器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信