Regular matching problems for infinite trees

Carlos Camino, V. Diekert, B. Dundua, M. Marin, G'eraud S'enizergues
{"title":"Regular matching problems for infinite trees","authors":"Carlos Camino, V. Diekert, B. Dundua, M. Marin, G'eraud S'enizergues","doi":"10.46298/lmcs-18(1:25)2022","DOIUrl":null,"url":null,"abstract":"We study the matching problem of regular tree languages, that is, \"$\\exists\n\\sigma:\\sigma(L)\\subseteq R$?\" where $L,R$ are regular tree languages over the\nunion of finite ranked alphabets $\\Sigma$ and $\\mathcal{X}$ where $\\mathcal{X}$\nis an alphabet of variables and $\\sigma$ is a substitution such that\n$\\sigma(x)$ is a set of trees in $T(\\Sigma\\cup H)\\setminus H$ for all $x\\in\n\\mathcal{X}$. Here, $H$ denotes a set of \"holes\" which are used to define a\n\"sorted\" concatenation of trees. Conway studied this problem in the special\ncase for languages of finite words in his classical textbook \"Regular algebra\nand finite machines\" published in 1971. He showed that if $L$ and $R$ are\nregular, then the problem \"$\\exists \\sigma \\forall x\\in \\mathcal{X}:\n\\sigma(x)\\neq \\emptyset\\wedge \\sigma(L)\\subseteq R$?\" is decidable. Moreover,\nthere are only finitely many maximal solutions, the maximal solutions are\nregular substitutions, and they are effectively computable. We extend Conway's\nresults when $L,R$ are regular languages of finite and infinite trees, and\nlanguage substitution is applied inside-out, in the sense of Engelfriet and\nSchmidt (1977/78). More precisely, we show that if $L\\subseteq\nT(\\Sigma\\cup\\mathcal{X})$ and $R\\subseteq T(\\Sigma)$ are regular tree languages\nover finite or infinite trees, then the problem \"$\\exists \\sigma \\forall x\\in\n\\mathcal{X}: \\sigma(x)\\neq \\emptyset\\wedge \\sigma_{\\mathrm{io}}(L)\\subseteq\nR$?\" is decidable. Here, the subscript \"$\\mathrm{io}$\" in\n$\\sigma_{\\mathrm{io}}(L)$ refers to \"inside-out\". Moreover, there are only\nfinitely many maximal solutions $\\sigma$, the maximal solutions are regular\nsubstitutions and effectively computable. The corresponding question for the\noutside-in extension $\\sigma_{\\mathrm{oi}}$ remains open, even in the\nrestricted setting of finite trees.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-18(1:25)2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We study the matching problem of regular tree languages, that is, "$\exists \sigma:\sigma(L)\subseteq R$?" where $L,R$ are regular tree languages over the union of finite ranked alphabets $\Sigma$ and $\mathcal{X}$ where $\mathcal{X}$ is an alphabet of variables and $\sigma$ is a substitution such that $\sigma(x)$ is a set of trees in $T(\Sigma\cup H)\setminus H$ for all $x\in \mathcal{X}$. Here, $H$ denotes a set of "holes" which are used to define a "sorted" concatenation of trees. Conway studied this problem in the special case for languages of finite words in his classical textbook "Regular algebra and finite machines" published in 1971. He showed that if $L$ and $R$ are regular, then the problem "$\exists \sigma \forall x\in \mathcal{X}: \sigma(x)\neq \emptyset\wedge \sigma(L)\subseteq R$?" is decidable. Moreover, there are only finitely many maximal solutions, the maximal solutions are regular substitutions, and they are effectively computable. We extend Conway's results when $L,R$ are regular languages of finite and infinite trees, and language substitution is applied inside-out, in the sense of Engelfriet and Schmidt (1977/78). More precisely, we show that if $L\subseteq T(\Sigma\cup\mathcal{X})$ and $R\subseteq T(\Sigma)$ are regular tree languages over finite or infinite trees, then the problem "$\exists \sigma \forall x\in \mathcal{X}: \sigma(x)\neq \emptyset\wedge \sigma_{\mathrm{io}}(L)\subseteq R$?" is decidable. Here, the subscript "$\mathrm{io}$" in $\sigma_{\mathrm{io}}(L)$ refers to "inside-out". Moreover, there are only finitely many maximal solutions $\sigma$, the maximal solutions are regular substitutions and effectively computable. The corresponding question for the outside-in extension $\sigma_{\mathrm{oi}}$ remains open, even in the restricted setting of finite trees.
无限树的正则匹配问题
我们研究了正则树语言的匹配问题,即“$\exists\sigma:\sigma(L)\subseteq R$”,其中$L,R$是有限排序字母$\Sigma$和$\mathcal{X}$的并集上的正则树语言,其中$\mathcal{X}$是变量的字母表,$\sigma$是替换,使得$\sigma(x)$是$T(\Sigma\cup H)\setminus H$中所有$x\in\mathcal{X}$的树的集合。这里,$H$表示一组“孔”,用于定义树的“排序”连接。康威在他1971年出版的经典教科书《正则代数和有限机器》中研究了有限词语言的特殊情况。他指出,如果$L$和$R$是不规则的,那么问题“$\exists \sigma \forall x\in \mathcal{X}:\sigma(x)\neq \emptyset\wedge \sigma(L)\subseteq R$ ?”是可以确定的。而且,极大解只有有限个,极大解是正则替换,是有效可计算的。当$L,R$是有限树和无限树的正则语言时,我们扩展了Conway的结果,并且在Engelfriet和schmidt(1977/78)的意义上,语言替换是由内向外应用的。更准确地说,如果$L\subseteqT(\Sigma\cup\mathcal{X})$和$R\subseteq T(\Sigma)$是有限树或无限树上的正则树语言,那么问题“$\exists \sigma \forall x\in\mathcal{X}: \sigma(x)\neq \emptyset\wedge \sigma_{\mathrm{io}}(L)\subseteqR$ ?”是可确定的。这里,$\sigma_{\mathrm{io}}(L)$中的下标“$\mathrm{io}$”表示“由内而外”。而且,极大解只有有限个$\sigma$,极大解是正则替换的,是有效可计算的。由外向内扩展$\sigma_{\mathrm{oi}}$的相应问题仍然是开放的,即使在有限树的限制设置中也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信