{"title":"The Advances in Multi-label Classification","authors":"Shijun Chen, Lin Gao","doi":"10.1109/ICMECG.2014.57","DOIUrl":null,"url":null,"abstract":"Traditional single-label classification in machine learning and pattern classification fields is concerned with learning from a set of examples that are associated with a single label from a label set. While in some application fields, such as text/audio/video classification and genome/protein function classification, the examples for learning are associated with a subset of a label set. The advances in the area of multi-label classification are summarized and organized into two classes according to their strategy. Meanwhile, the main characteristics of these methods are described. Specially, the ensemble methods for multi-label classification and methods for multi-label dataset with new characteristics are discussed. Moreover the future research directions are pointed out.","PeriodicalId":413431,"journal":{"name":"2014 International Conference on Management of e-Commerce and e-Government","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Management of e-Commerce and e-Government","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMECG.2014.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Traditional single-label classification in machine learning and pattern classification fields is concerned with learning from a set of examples that are associated with a single label from a label set. While in some application fields, such as text/audio/video classification and genome/protein function classification, the examples for learning are associated with a subset of a label set. The advances in the area of multi-label classification are summarized and organized into two classes according to their strategy. Meanwhile, the main characteristics of these methods are described. Specially, the ensemble methods for multi-label classification and methods for multi-label dataset with new characteristics are discussed. Moreover the future research directions are pointed out.