Novel Objective-Space-Dividing Multi-objectives evolutionary algorithm and its convergence property

Zhiyong Li, Chao Chen, Chang-an Ren, E. Mohammed
{"title":"Novel Objective-Space-Dividing Multi-objectives evolutionary algorithm and its convergence property","authors":"Zhiyong Li, Chao Chen, Chang-an Ren, E. Mohammed","doi":"10.1109/BICTA.2010.5645298","DOIUrl":null,"url":null,"abstract":"To overcome the shortcomings of Multi-Objectives Evolutionary Algorithms (MOEAs) based on the notion of Objective-Space-Dividing (OSD) with high calculation complexity, this paper proposes an improved algorithm called OSD-MOEA. The proposed algorithm supports the following features: 1) transforming the Pareto relationship among individuals to the ranking relationship of the total value of indexes in divided space; 2) simple and efficient environment choosing method based on index ranking; 3) an individual crowding algorithm which rapidly chooses the nearest individual to the origin. Convergence analysis shows the convergence property of the proposed algorithm. Simulation results of the proposed algorithm OSD-MOEA are compared with NSGAII and PSFGA and high efficiency, low time complexity and good convergence are noticed.","PeriodicalId":302619,"journal":{"name":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2010.5645298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

To overcome the shortcomings of Multi-Objectives Evolutionary Algorithms (MOEAs) based on the notion of Objective-Space-Dividing (OSD) with high calculation complexity, this paper proposes an improved algorithm called OSD-MOEA. The proposed algorithm supports the following features: 1) transforming the Pareto relationship among individuals to the ranking relationship of the total value of indexes in divided space; 2) simple and efficient environment choosing method based on index ranking; 3) an individual crowding algorithm which rapidly chooses the nearest individual to the origin. Convergence analysis shows the convergence property of the proposed algorithm. Simulation results of the proposed algorithm OSD-MOEA are compared with NSGAII and PSFGA and high efficiency, low time complexity and good convergence are noticed.
一种新的目标-空间划分多目标进化算法及其收敛性
针对基于目标空间分割(OSD)概念的多目标进化算法(moea)计算复杂度高的缺点,提出了一种改进的多目标进化算法OSD- moea。该算法具有以下特点:1)将个体间的Pareto关系转化为划分空间中各指标总价值的排序关系;2)基于指标排序的简单高效的环境选择方法;3)快速选择离原点最近的个体的个体拥挤算法。收敛性分析表明了该算法的收敛性。将该算法与NSGAII和PSFGA进行了仿真比较,结果表明该算法效率高、时间复杂度低、收敛性好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信