{"title":"Novel Objective-Space-Dividing Multi-objectives evolutionary algorithm and its convergence property","authors":"Zhiyong Li, Chao Chen, Chang-an Ren, E. Mohammed","doi":"10.1109/BICTA.2010.5645298","DOIUrl":null,"url":null,"abstract":"To overcome the shortcomings of Multi-Objectives Evolutionary Algorithms (MOEAs) based on the notion of Objective-Space-Dividing (OSD) with high calculation complexity, this paper proposes an improved algorithm called OSD-MOEA. The proposed algorithm supports the following features: 1) transforming the Pareto relationship among individuals to the ranking relationship of the total value of indexes in divided space; 2) simple and efficient environment choosing method based on index ranking; 3) an individual crowding algorithm which rapidly chooses the nearest individual to the origin. Convergence analysis shows the convergence property of the proposed algorithm. Simulation results of the proposed algorithm OSD-MOEA are compared with NSGAII and PSFGA and high efficiency, low time complexity and good convergence are noticed.","PeriodicalId":302619,"journal":{"name":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2010.5645298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
To overcome the shortcomings of Multi-Objectives Evolutionary Algorithms (MOEAs) based on the notion of Objective-Space-Dividing (OSD) with high calculation complexity, this paper proposes an improved algorithm called OSD-MOEA. The proposed algorithm supports the following features: 1) transforming the Pareto relationship among individuals to the ranking relationship of the total value of indexes in divided space; 2) simple and efficient environment choosing method based on index ranking; 3) an individual crowding algorithm which rapidly chooses the nearest individual to the origin. Convergence analysis shows the convergence property of the proposed algorithm. Simulation results of the proposed algorithm OSD-MOEA are compared with NSGAII and PSFGA and high efficiency, low time complexity and good convergence are noticed.