Safe Control Using High-Order Measurement Robust Control Barrier Functions

Pradeep Sharma Oruganti, Parinaz Naghizadeh Ardabili, Q. Ahmed
{"title":"Safe Control Using High-Order Measurement Robust Control Barrier Functions","authors":"Pradeep Sharma Oruganti, Parinaz Naghizadeh Ardabili, Q. Ahmed","doi":"10.23919/ACC55779.2023.10155975","DOIUrl":null,"url":null,"abstract":"We study the problem of providing safety guarantees for dynamic systems of high relative degree in the presence of state measurement errors. To this end, we propose High-Order Measurement Robust Control Barrier Functions (HO-MR-CBFs), an extension of the recently proposed Measurement Robust Control Barrier Functions. We begin by formally defining HO-MR-CBF, and identify conditions under which the proposed HO-MR-CBF can render the system’s safe set forward invariant. In addition, we provide bounds on the state measurement errors for which the optimization problem for identifying the corresponding safe controllers is feasible for all states within the safe set and given restricted control inputs. We demonstrate the proposed approach through numerical experiments on a collision avoidance scenario in presence of measurement noise. We show that using our proposed control method, the robot, which has access to only biased state estimates, will be successful in avoiding the obstacle.","PeriodicalId":397401,"journal":{"name":"2023 American Control Conference (ACC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC55779.2023.10155975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the problem of providing safety guarantees for dynamic systems of high relative degree in the presence of state measurement errors. To this end, we propose High-Order Measurement Robust Control Barrier Functions (HO-MR-CBFs), an extension of the recently proposed Measurement Robust Control Barrier Functions. We begin by formally defining HO-MR-CBF, and identify conditions under which the proposed HO-MR-CBF can render the system’s safe set forward invariant. In addition, we provide bounds on the state measurement errors for which the optimization problem for identifying the corresponding safe controllers is feasible for all states within the safe set and given restricted control inputs. We demonstrate the proposed approach through numerical experiments on a collision avoidance scenario in presence of measurement noise. We show that using our proposed control method, the robot, which has access to only biased state estimates, will be successful in avoiding the obstacle.
基于高阶测量鲁棒控制屏障函数的安全控制
研究了存在状态测量误差时高相对度动态系统的安全保证问题。为此,我们提出了高阶测量鲁棒控制势垒函数(HO-MR-CBFs),这是最近提出的测量鲁棒控制势垒函数的扩展。我们首先正式定义HO-MR-CBF,并确定所提出的HO-MR-CBF可以使系统的安全集前向不变的条件。此外,我们还提供了状态测量误差的边界,使得识别相应安全控制器的优化问题对于安全集中的所有状态和给定的限制控制输入都是可行的。我们通过存在测量噪声的避碰场景的数值实验证明了所提出的方法。我们表明,使用我们提出的控制方法,机器人只能获得有偏差的状态估计,将成功地避开障碍物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信