Generalized adaptive edge-preserving image restoration algorithm

S. Park, M. Kang
{"title":"Generalized adaptive edge-preserving image restoration algorithm","authors":"S. Park, M. Kang","doi":"10.1109/TENCON.1999.818517","DOIUrl":null,"url":null,"abstract":"Discontinuities present serious difficulties to standard regularization, since standard regularization theory imposes global smoothness constraints on possible solution. We propose a noise-adaptive edge-preserving image restoration algorithm based on the Markov random field image model. Our potential function is controlled by the weighting function for providing the capability of adaptively introducing the discontinuities into the solution. Moreover a new parameter is adopted to prevent the undesirable amplification of strong noise. Extending our previous work, we propose a nonlinear formulation of the regularization functional and derive an iterative algorithm for ensuring the global minimum. The effectiveness of the proposed algorithm is demonstrated experimentally.","PeriodicalId":121142,"journal":{"name":"Proceedings of IEEE. IEEE Region 10 Conference. TENCON 99. 'Multimedia Technology for Asia-Pacific Information Infrastructure' (Cat. No.99CH37030)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE. IEEE Region 10 Conference. TENCON 99. 'Multimedia Technology for Asia-Pacific Information Infrastructure' (Cat. No.99CH37030)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.1999.818517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Discontinuities present serious difficulties to standard regularization, since standard regularization theory imposes global smoothness constraints on possible solution. We propose a noise-adaptive edge-preserving image restoration algorithm based on the Markov random field image model. Our potential function is controlled by the weighting function for providing the capability of adaptively introducing the discontinuities into the solution. Moreover a new parameter is adopted to prevent the undesirable amplification of strong noise. Extending our previous work, we propose a nonlinear formulation of the regularization functional and derive an iterative algorithm for ensuring the global minimum. The effectiveness of the proposed algorithm is demonstrated experimentally.
广义自适应保边图像恢复算法
由于标准正则化理论对可能解施加了全局光滑性约束,因此不连续点给标准正则化带来了严重的困难。提出了一种基于马尔可夫随机场图像模型的自适应噪声边缘保持图像恢复算法。我们的势函数由加权函数控制,以提供自适应地将不连续引入解中的能力。此外,为了防止强噪声的不良放大,采用了新的参数。在此基础上,我们提出了正则化泛函的非线性公式,并推导了保证全局最小值的迭代算法。实验证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信