Hybrid Feature Selection and Tumor Identification in Brain MRI Using Swarm Intelligence

A. Rehman, Aasia Khanum, A. Shaukat
{"title":"Hybrid Feature Selection and Tumor Identification in Brain MRI Using Swarm Intelligence","authors":"A. Rehman, Aasia Khanum, A. Shaukat","doi":"10.1109/FIT.2013.17","DOIUrl":null,"url":null,"abstract":"Demand for automatic classification of Brain MRI (Magnetic Resonance Imaging) in the field of Diagnostic Medicine is rising. Feature Selection of Brain MRI is critical and it has a great influence on the classification outcomes, however selecting optimal Brain MRI features is difficult. Particle Swarm Optimization (PSO) is an evolutionary meta-heuristic approach that has shown great potential in solving NP-hard optimization problems. In this paper MRI feature selection is achieved using Discrete Binary Particle Swarm Optimization (DBPSO). Classification of normal and abnormal Brain MRI is carried out using two different classifiers i.e. Support Vector Machine (SVM) and K-Nearest Neighbor (KNN). Experimental results show that the proposed approach reduces the number of features and at the same time it achieves high accuracy level. PSO-SVM is observed to achieve high accuracy level using minimum number of selected features.","PeriodicalId":179067,"journal":{"name":"2013 11th International Conference on Frontiers of Information Technology","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 11th International Conference on Frontiers of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIT.2013.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Demand for automatic classification of Brain MRI (Magnetic Resonance Imaging) in the field of Diagnostic Medicine is rising. Feature Selection of Brain MRI is critical and it has a great influence on the classification outcomes, however selecting optimal Brain MRI features is difficult. Particle Swarm Optimization (PSO) is an evolutionary meta-heuristic approach that has shown great potential in solving NP-hard optimization problems. In this paper MRI feature selection is achieved using Discrete Binary Particle Swarm Optimization (DBPSO). Classification of normal and abnormal Brain MRI is carried out using two different classifiers i.e. Support Vector Machine (SVM) and K-Nearest Neighbor (KNN). Experimental results show that the proposed approach reduces the number of features and at the same time it achieves high accuracy level. PSO-SVM is observed to achieve high accuracy level using minimum number of selected features.
基于群体智能的脑MRI混合特征选择与肿瘤识别
诊断医学领域对脑MRI(磁共振成像)自动分类的需求正在上升。脑MRI特征选择至关重要,对分类结果有很大影响,但选择最佳的脑MRI特征是一个难点。粒子群优化(PSO)是一种进化元启发式方法,在求解NP-hard优化问题中显示出巨大的潜力。本文采用离散二元粒子群算法(DBPSO)实现了MRI特征选择。使用支持向量机(SVM)和k -最近邻(KNN)两种不同的分类器对正常和异常脑MRI进行分类。实验结果表明,该方法在减少特征数量的同时达到了较高的精度水平。观察到PSO-SVM使用最少的选择特征数达到较高的精度水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信