Side-Channel Analysis of the Random Number Generator in STM32 MCUs

Kalle Ngo, E. Dubrova
{"title":"Side-Channel Analysis of the Random Number Generator in STM32 MCUs","authors":"Kalle Ngo, E. Dubrova","doi":"10.1145/3526241.3530324","DOIUrl":null,"url":null,"abstract":"The hardware random number generator (RNG) integrated in STM32 MCUs is intended to ensure that the numbers it generates cannot be guessed with a probability higher than a random guess. The RNG is based on several ring oscillators whose outputs are combined and post-processed to produce a 32-bit random number per round of computation. In this paper, we show that it is possible to train a neural network capable of recovering the Hamming weight of these random numbers from power traces with a higher than 60% probability. This is a 4-fold improvement over the 14% probability of the most likely Hamming weight.","PeriodicalId":188228,"journal":{"name":"Proceedings of the Great Lakes Symposium on VLSI 2022","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Great Lakes Symposium on VLSI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526241.3530324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The hardware random number generator (RNG) integrated in STM32 MCUs is intended to ensure that the numbers it generates cannot be guessed with a probability higher than a random guess. The RNG is based on several ring oscillators whose outputs are combined and post-processed to produce a 32-bit random number per round of computation. In this paper, we show that it is possible to train a neural network capable of recovering the Hamming weight of these random numbers from power traces with a higher than 60% probability. This is a 4-fold improvement over the 14% probability of the most likely Hamming weight.
STM32单片机中随机数发生器的侧信道分析
集成在STM32 mcu中的硬件随机数生成器(RNG)旨在确保其生成的数字不会以高于随机猜测的概率被猜出。RNG基于几个环形振荡器,它们的输出经过组合和后处理,每轮计算产生一个32位随机数。在本文中,我们证明了有可能训练一个能够以高于60%的概率从功率走线恢复这些随机数的汉明权值的神经网络。这比最可能的汉明权重14%的概率提高了4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信