{"title":"Side-Channel Analysis of the Random Number Generator in STM32 MCUs","authors":"Kalle Ngo, E. Dubrova","doi":"10.1145/3526241.3530324","DOIUrl":null,"url":null,"abstract":"The hardware random number generator (RNG) integrated in STM32 MCUs is intended to ensure that the numbers it generates cannot be guessed with a probability higher than a random guess. The RNG is based on several ring oscillators whose outputs are combined and post-processed to produce a 32-bit random number per round of computation. In this paper, we show that it is possible to train a neural network capable of recovering the Hamming weight of these random numbers from power traces with a higher than 60% probability. This is a 4-fold improvement over the 14% probability of the most likely Hamming weight.","PeriodicalId":188228,"journal":{"name":"Proceedings of the Great Lakes Symposium on VLSI 2022","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Great Lakes Symposium on VLSI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526241.3530324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The hardware random number generator (RNG) integrated in STM32 MCUs is intended to ensure that the numbers it generates cannot be guessed with a probability higher than a random guess. The RNG is based on several ring oscillators whose outputs are combined and post-processed to produce a 32-bit random number per round of computation. In this paper, we show that it is possible to train a neural network capable of recovering the Hamming weight of these random numbers from power traces with a higher than 60% probability. This is a 4-fold improvement over the 14% probability of the most likely Hamming weight.