Join Path-Based Data Augmentation for Decision Trees

Andra Ionescu, Rihan Hai, Marios Fragkoulis, Asterios Katsifodimos
{"title":"Join Path-Based Data Augmentation for Decision Trees","authors":"Andra Ionescu, Rihan Hai, Marios Fragkoulis, Asterios Katsifodimos","doi":"10.1109/icdew55742.2022.00018","DOIUrl":null,"url":null,"abstract":"Machine Learning (ML) applications require high-quality datasets. Automated data augmentation techniques can help increase the richness of training data, thus increasing the ML model accuracy. Existing solutions focus on efficiency and ML model accuracy but do not exploit the richness of dataset relationships. With relational data, the challenge lies in identifying join paths that best augment a feature table to increase the performance of a model. In this paper we propose a two-step, automated data augmentation approach for relational data that involves: (i) enumerating join paths of various lengths given a base table and (ii) ranking the join paths using filter methods for feature selection. We show that our approach can improve prediction accuracy and reduce runtime compared to the baseline approach.","PeriodicalId":429378,"journal":{"name":"2022 IEEE 38th International Conference on Data Engineering Workshops (ICDEW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 38th International Conference on Data Engineering Workshops (ICDEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icdew55742.2022.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Machine Learning (ML) applications require high-quality datasets. Automated data augmentation techniques can help increase the richness of training data, thus increasing the ML model accuracy. Existing solutions focus on efficiency and ML model accuracy but do not exploit the richness of dataset relationships. With relational data, the challenge lies in identifying join paths that best augment a feature table to increase the performance of a model. In this paper we propose a two-step, automated data augmentation approach for relational data that involves: (i) enumerating join paths of various lengths given a base table and (ii) ranking the join paths using filter methods for feature selection. We show that our approach can improve prediction accuracy and reduce runtime compared to the baseline approach.
基于联接路径的决策树数据增强
机器学习(ML)应用需要高质量的数据集。自动化数据增强技术可以帮助增加训练数据的丰富性,从而提高机器学习模型的准确性。现有的解决方案侧重于效率和ML模型的准确性,但没有利用数据集关系的丰富性。对于关系数据,挑战在于确定最好地扩展特征表以提高模型性能的连接路径。在本文中,我们提出了一种两步自动数据增强方法,用于关系数据,其中包括:(i)枚举给定基表的各种长度的连接路径;(ii)使用过滤器方法对连接路径进行特征选择排序。我们表明,与基线方法相比,我们的方法可以提高预测精度并减少运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信