Point cloud processing strategies for noise filtering, structural segmentation, and meshing of ground-based 3D Flash LIDAR images

D. Natale, Matthew S. Baran, R. Tutwiler
{"title":"Point cloud processing strategies for noise filtering, structural segmentation, and meshing of ground-based 3D Flash LIDAR images","authors":"D. Natale, Matthew S. Baran, R. Tutwiler","doi":"10.1109/AIPR.2010.5759695","DOIUrl":null,"url":null,"abstract":"It is now the case that well-performing flash LIDAR focal plane array devices are commercially available. Such devices give us the ability to measure and record frame-registered 3D point cloud sequences at video frame rates. For many 3D computer vision applications this allows the processes of structure from motion or multi-view stereo reconstruction to be circumvented. This allows us to construct simpler, more efficient, and more robust 3D computer vision systems. This is a particular advantage for ground-based vision tasks which necessitate real-time or near real-time operation. The goal of this work is introduce several important considerations for dealing with commercial 3D Flash LIDAR data and to describe useful strategies for noise filtering, structural segmentation, and meshing of ground-based data. With marginal refinement efforts the results of this work are directly applicable to many ground-based computer vision tasks.","PeriodicalId":128378,"journal":{"name":"2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2010.5759695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

It is now the case that well-performing flash LIDAR focal plane array devices are commercially available. Such devices give us the ability to measure and record frame-registered 3D point cloud sequences at video frame rates. For many 3D computer vision applications this allows the processes of structure from motion or multi-view stereo reconstruction to be circumvented. This allows us to construct simpler, more efficient, and more robust 3D computer vision systems. This is a particular advantage for ground-based vision tasks which necessitate real-time or near real-time operation. The goal of this work is introduce several important considerations for dealing with commercial 3D Flash LIDAR data and to describe useful strategies for noise filtering, structural segmentation, and meshing of ground-based data. With marginal refinement efforts the results of this work are directly applicable to many ground-based computer vision tasks.
基于地面的三维闪光激光雷达图像的噪声滤波、结构分割和网格划分的点云处理策略
现在的情况是,性能良好的闪光激光雷达焦平面阵列设备已商品化。这样的设备使我们能够以视频帧速率测量和记录帧注册的3D点云序列。对于许多3D计算机视觉应用程序,这允许从运动或多视图立体重建的结构过程被规避。这使我们能够构建更简单,更高效,更强大的3D计算机视觉系统。这对于需要实时或近实时操作的地面视觉任务来说是一个特别的优势。这项工作的目标是介绍处理商业3D Flash LIDAR数据的几个重要考虑因素,并描述地面数据的噪声滤波,结构分割和网格化的有用策略。经过边际改进,本工作的结果可直接应用于许多地面计算机视觉任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信