Machine Learning Methods and Asymmetric Cost Function to Estimate Execution Effort of Software Testing

Daniel Guerreiro e Silva, M. Jino, B. T. D. Abreu
{"title":"Machine Learning Methods and Asymmetric Cost Function to Estimate Execution Effort of Software Testing","authors":"Daniel Guerreiro e Silva, M. Jino, B. T. D. Abreu","doi":"10.1109/ICST.2010.46","DOIUrl":null,"url":null,"abstract":"Planning and scheduling of testing activities play an important role for any independent test team that performs tests for different software systems, developed by different development teams. This work studies the application of machine learning tools and variable selection tools to solve the problem of estimating the execution effort of functional tests. An analysis of the test execution process is developed and experiments are performed on two real databases. The main contributions of this paper are the approach of selecting the significant variables for database synthesis and the use of an artificial neural network trained with an asymmetric cost function.","PeriodicalId":192678,"journal":{"name":"2010 Third International Conference on Software Testing, Verification and Validation","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Third International Conference on Software Testing, Verification and Validation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICST.2010.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Planning and scheduling of testing activities play an important role for any independent test team that performs tests for different software systems, developed by different development teams. This work studies the application of machine learning tools and variable selection tools to solve the problem of estimating the execution effort of functional tests. An analysis of the test execution process is developed and experiments are performed on two real databases. The main contributions of this paper are the approach of selecting the significant variables for database synthesis and the use of an artificial neural network trained with an asymmetric cost function.
估算软件测试执行力的机器学习方法和非对称成本函数
对于任何独立的测试团队来说,为不同的软件系统(由不同的开发团队开发)执行测试,测试活动的计划和日程安排都扮演着重要的角色。本工作研究了机器学习工具和变量选择工具的应用,以解决估计功能测试执行工作量的问题。对测试执行过程进行了分析,并在两个实际数据库上进行了实验。本文的主要贡献是选择数据库合成的重要变量的方法以及使用非对称代价函数训练的人工神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信