Spectral analysis of text collection for similarity-based clustering

Wenyuan Li, W. Ng, Ee-Peng Lim
{"title":"Spectral analysis of text collection for similarity-based clustering","authors":"Wenyuan Li, W. Ng, Ee-Peng Lim","doi":"10.1109/ICDE.2004.1320064","DOIUrl":null,"url":null,"abstract":"Clustering of text collections is generally difficult due to its high dimensionality, heterogeneity, and large size. These characteristics compound the problem of determining the appropriate similarity space for clustering algorithms. Here, we propose to use the spectral analysis of the similarity space of a text collection to predict clustering behavior before actual clustering is performed. Spectral analysis is a technique that has been adopted across different domains to analyze the key encoding information of a system. Using spectral analysis for prediction is useful in first determining the quality of the similarity space and discovering any possible problems the selected feature set may present.","PeriodicalId":358862,"journal":{"name":"Proceedings. 20th International Conference on Data Engineering","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 20th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2004.1320064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Clustering of text collections is generally difficult due to its high dimensionality, heterogeneity, and large size. These characteristics compound the problem of determining the appropriate similarity space for clustering algorithms. Here, we propose to use the spectral analysis of the similarity space of a text collection to predict clustering behavior before actual clustering is performed. Spectral analysis is a technique that has been adopted across different domains to analyze the key encoding information of a system. Using spectral analysis for prediction is useful in first determining the quality of the similarity space and discovering any possible problems the selected feature set may present.
基于相似度聚类的文本收集光谱分析
由于文本集合的高维性、异构性和大尺寸,聚类通常是困难的。这些特征使得为聚类算法确定合适的相似空间的问题复杂化。在这里,我们建议在执行实际聚类之前,使用文本集合的相似空间的谱分析来预测聚类行为。谱分析是一种用于分析系统关键编码信息的跨领域技术。使用谱分析进行预测在首先确定相似空间的质量和发现所选特征集可能存在的任何可能的问题时是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信