An Efficient Abnormality Classification for Mammogram Images

Tarek Abudawood, Fares S. Al-Qunaieer, Saud R. Alrshoud
{"title":"An Efficient Abnormality Classification for Mammogram Images","authors":"Tarek Abudawood, Fares S. Al-Qunaieer, Saud R. Alrshoud","doi":"10.1109/NCG.2018.8593208","DOIUrl":null,"url":null,"abstract":"In this work we focus on developing an accurate and lightweight automated diagnostic system for classifying abnormalities in breast cancer mammogram images using the Local Binary Patterns (LBP) feature extraction method at the heart of a machine learning model. We empirically show the success of the approach in recognising the presence or absence of abnormality(ies) with high predictive performance in terms of accuracy, precision, recall, and F1-score, and against other features extraction methods employed within different a number of classifiers. The reported results show a minimum of 13% performance gap in favour of our selected approach to the closest model. Our approach exceeds 90% in most of the models when applied over DDSM, the breast cancer mammography benchmark dataset.","PeriodicalId":305464,"journal":{"name":"2018 21st Saudi Computer Society National Computer Conference (NCC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 21st Saudi Computer Society National Computer Conference (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCG.2018.8593208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this work we focus on developing an accurate and lightweight automated diagnostic system for classifying abnormalities in breast cancer mammogram images using the Local Binary Patterns (LBP) feature extraction method at the heart of a machine learning model. We empirically show the success of the approach in recognising the presence or absence of abnormality(ies) with high predictive performance in terms of accuracy, precision, recall, and F1-score, and against other features extraction methods employed within different a number of classifiers. The reported results show a minimum of 13% performance gap in favour of our selected approach to the closest model. Our approach exceeds 90% in most of the models when applied over DDSM, the breast cancer mammography benchmark dataset.
一种有效的乳房x线影像异常分类方法
在这项工作中,我们专注于开发一种准确且轻量级的自动诊断系统,用于使用机器学习模型核心的局部二值模式(LBP)特征提取方法对乳腺癌乳房x线照片中的异常进行分类。我们的经验表明,该方法在识别异常的存在或不存在方面取得了成功,在准确性、精密度、召回率和f1分数方面具有很高的预测性能,并与不同数量的分类器中使用的其他特征提取方法相比较。报告的结果显示,对于我们选择的最接近模型的方法,至少有13%的性能差距。当应用于DDSM(乳腺癌乳房x线照相术基准数据集)时,我们的方法在大多数模型中超过90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信