An Introduction to Text Classification with Applications to Medical Records

Yingqiu Zhou
{"title":"An Introduction to Text Classification with Applications to Medical Records","authors":"Yingqiu Zhou","doi":"10.1109/ITCA52113.2020.00105","DOIUrl":null,"url":null,"abstract":"We proposed and completed a real-life data mining problem, aka, text corpus classification. We extracted 15,500 medical documents relevant to ten different diseases and used the bag-of-words model to create a word occurrence vector for each document. The latent semantic analysis (LSA) method is then used to reduce the occurrence vector’s dimensionality to a feature vector of dimension 200. We selected a multilayer perceptron (MLP) neural network to do the final classification and report the performance comparison with the other six classifiers. We also completed the grid search for the best feature subspace dimensionality.","PeriodicalId":103309,"journal":{"name":"2020 2nd International Conference on Information Technology and Computer Application (ITCA)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Information Technology and Computer Application (ITCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITCA52113.2020.00105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We proposed and completed a real-life data mining problem, aka, text corpus classification. We extracted 15,500 medical documents relevant to ten different diseases and used the bag-of-words model to create a word occurrence vector for each document. The latent semantic analysis (LSA) method is then used to reduce the occurrence vector’s dimensionality to a feature vector of dimension 200. We selected a multilayer perceptron (MLP) neural network to do the final classification and report the performance comparison with the other six classifiers. We also completed the grid search for the best feature subspace dimensionality.
介绍文本分类及其在医疗记录中的应用
我们提出并完成了一个现实生活中的数据挖掘问题,即文本语料库分类。我们提取了与10种不同疾病相关的15500份医疗文档,并使用单词袋模型为每个文档创建单词出现向量。然后使用潜在语义分析(LSA)方法将发生向量的维数降为200维的特征向量。我们选择了一个多层感知器(MLP)神经网络来进行最后的分类,并报告了与其他六个分类器的性能比较。我们还完成了最佳特征子空间维数的网格搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信