Neural Dynamic Successive Cancellation Flip Decoding of Polar Codes

Nghia Doan, Seyyed Ali Hashemi, Furkan Ercan, Thibaud Tonnellier, W. Gross
{"title":"Neural Dynamic Successive Cancellation Flip Decoding of Polar Codes","authors":"Nghia Doan, Seyyed Ali Hashemi, Furkan Ercan, Thibaud Tonnellier, W. Gross","doi":"10.1109/SiPS47522.2019.9020513","DOIUrl":null,"url":null,"abstract":"Dynamic successive cancellation flip (DSCF) decoding of polar codes is a powerful algorithm that can achieve the error correction performance of successive cancellation list (SCL) decoding, with a complexity that is close to that of successive cancellation (SC) decoding at practical signal-to-noise ratio (SNR) regimes. However, DSCF decoding requires costly transcendental computations which adversely affect its implementation complexity. In this paper, we first show that a direct application of common approximation schemes on the conventional DSCF decoding results in significant error-correction performance loss. We then introduce a training parameter and propose an approximation scheme which completely removes the need to perform transcendental computations in DSCF decoding, with almost no error-correction performance degradation.","PeriodicalId":256971,"journal":{"name":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"539 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS47522.2019.9020513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Dynamic successive cancellation flip (DSCF) decoding of polar codes is a powerful algorithm that can achieve the error correction performance of successive cancellation list (SCL) decoding, with a complexity that is close to that of successive cancellation (SC) decoding at practical signal-to-noise ratio (SNR) regimes. However, DSCF decoding requires costly transcendental computations which adversely affect its implementation complexity. In this paper, we first show that a direct application of common approximation schemes on the conventional DSCF decoding results in significant error-correction performance loss. We then introduce a training parameter and propose an approximation scheme which completely removes the need to perform transcendental computations in DSCF decoding, with almost no error-correction performance degradation.
极性码的神经动态连续对消翻转译码
动态连续对消翻转(DSCF)极化码译码是一种功能强大的译码算法,可以实现连续对消列表(SCL)译码的纠错性能,其复杂度接近实际信噪比下的连续对消(SC)译码。然而,DSCF解码需要昂贵的超越计算,这对其实现的复杂性有不利影响。在本文中,我们首先证明了在传统的DSCF解码上直接应用通用近似方案会导致显著的纠错性能损失。然后,我们引入了一个训练参数,并提出了一个近似方案,该方案完全消除了在DSCF解码中执行超越计算的需要,几乎没有纠错性能的下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信