An efficient automated method for exudates segmentation using image normalization and histogram analysis

Ashmita Gupta, Ashish Issac, Namita Sengar, M. Dutta
{"title":"An efficient automated method for exudates segmentation using image normalization and histogram analysis","authors":"Ashmita Gupta, Ashish Issac, Namita Sengar, M. Dutta","doi":"10.1109/IC3.2016.7880256","DOIUrl":null,"url":null,"abstract":"Exudates are one of the abnormalities present on the retina which are used for identification of diseases like Diabetic Retinopathy and Macular Edema. There arises a need for automated and correct segmentation of exudates from digital fundus images. This paper proposes an automated computer vision technique for efficient exudates segmentation from fundus images. The proposed method segments the exudates using an adaptive intensity based threshold which is selected by strategically combining first order statistical parameters and local thresholding based method. The proposed technique correctly detects exudates from the fundus images with an average computation time of 9 seconds. The proposed method is computationally fast and can be used in image processing based applications for diagnosis of ocular diseases.","PeriodicalId":294210,"journal":{"name":"2016 Ninth International Conference on Contemporary Computing (IC3)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Ninth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2016.7880256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Exudates are one of the abnormalities present on the retina which are used for identification of diseases like Diabetic Retinopathy and Macular Edema. There arises a need for automated and correct segmentation of exudates from digital fundus images. This paper proposes an automated computer vision technique for efficient exudates segmentation from fundus images. The proposed method segments the exudates using an adaptive intensity based threshold which is selected by strategically combining first order statistical parameters and local thresholding based method. The proposed technique correctly detects exudates from the fundus images with an average computation time of 9 seconds. The proposed method is computationally fast and can be used in image processing based applications for diagnosis of ocular diseases.
一种利用图像归一化和直方图分析的高效自动化渗出物分割方法
渗出物是视网膜上存在的一种异常现象,可用于识别糖尿病视网膜病变和黄斑水肿等疾病。因此,需要对数字眼底图像中的渗出物进行自动、正确的分割。本文提出了一种自动计算机视觉技术,用于眼底图像的高效渗出物分割。该方法通过一阶统计参数和局部阈值相结合的策略选择基于自适应强度的阈值,对渗出液进行分割。该方法能够准确地检测眼底图像中的渗出物,平均计算时间为9秒。该方法计算速度快,可用于基于图像处理的眼部疾病诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信