Automatic Parameter Tuning via Reinforcement Learning for Crowd Simulation with Social Distancing

Yiran Zhao, Roland Geraerts
{"title":"Automatic Parameter Tuning via Reinforcement Learning for Crowd Simulation with Social Distancing","authors":"Yiran Zhao, Roland Geraerts","doi":"10.1109/MMAR55195.2022.9874284","DOIUrl":null,"url":null,"abstract":"Reinforcement learning (RL) has been applied to a variety of fields such as gaming and robot navigation. We study the application of RL in crowd simulation by proposing an automatic parameter tuning system based on Proximal Policy Optimization (PPO). The system can be used with any crowd simulation software to improve the quality of the simulation by automatically assigning parameters to each agent during the simulation. Our experiments indicate that the automatic parameter tuning system can reduce unexpected congestions in counterflow scenarios. In addition, by utilizing the improved commonly used crowd simulation algorithms and our parame-ter tunning system, we can represent social distancing behavior of pedestrians under COVID-19, where pedestrians comply to the suggested social distance when they have enough space to move while they reduce their social distances to others when there is limited space.","PeriodicalId":169528,"journal":{"name":"2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR55195.2022.9874284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reinforcement learning (RL) has been applied to a variety of fields such as gaming and robot navigation. We study the application of RL in crowd simulation by proposing an automatic parameter tuning system based on Proximal Policy Optimization (PPO). The system can be used with any crowd simulation software to improve the quality of the simulation by automatically assigning parameters to each agent during the simulation. Our experiments indicate that the automatic parameter tuning system can reduce unexpected congestions in counterflow scenarios. In addition, by utilizing the improved commonly used crowd simulation algorithms and our parame-ter tunning system, we can represent social distancing behavior of pedestrians under COVID-19, where pedestrians comply to the suggested social distance when they have enough space to move while they reduce their social distances to others when there is limited space.
基于强化学习的社会距离人群模拟参数自动调整
强化学习(RL)已被应用于游戏和机器人导航等多个领域。通过提出一种基于近端策略优化(PPO)的参数自动调整系统,研究了强化学习在人群仿真中的应用。该系统可与任何人群仿真软件配合使用,通过在仿真过程中自动为每个agent分配参数,提高仿真质量。实验表明,自动参数调整系统可以减少逆流场景下的意外拥塞。此外,利用改进的常用人群模拟算法和我们的参数调谐系统,我们可以表示COVID-19下行人的社会距离行为,行人在有足够的移动空间时遵守建议的社会距离,而在空间有限时减少与他人的社会距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信