Multiresolution wavelet transform and supervised learning for content-based image retrieval

C. Brambilla, A. Ventura, I. Gagliardi, R. Schettini
{"title":"Multiresolution wavelet transform and supervised learning for content-based image retrieval","authors":"C. Brambilla, A. Ventura, I. Gagliardi, R. Schettini","doi":"10.1109/MMCS.1999.779144","DOIUrl":null,"url":null,"abstract":"We focus on the definition of an effective strategy that allows the user to pose a visual query and retrieve a set of images from a database that satisfy his criteria of pictorial similarity without requiring any semantic expression of them. The strategy exploits a multiresolution wavelet transform to effectively describe image content. The salient features of the images are coded in signatures of predefined lengths which are compared in the retrieval phase by applying a similarity measure the system has pre-learned, using a regression model for ordinal responses, from a learning set of \"very similar\", \"rather-similar\", \"not-very-similar\", and \"different\" pairs of images. Some experimental results demonstrating the effectiveness of this approach are reported.","PeriodicalId":408680,"journal":{"name":"Proceedings IEEE International Conference on Multimedia Computing and Systems","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Conference on Multimedia Computing and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMCS.1999.779144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

We focus on the definition of an effective strategy that allows the user to pose a visual query and retrieve a set of images from a database that satisfy his criteria of pictorial similarity without requiring any semantic expression of them. The strategy exploits a multiresolution wavelet transform to effectively describe image content. The salient features of the images are coded in signatures of predefined lengths which are compared in the retrieval phase by applying a similarity measure the system has pre-learned, using a regression model for ordinal responses, from a learning set of "very similar", "rather-similar", "not-very-similar", and "different" pairs of images. Some experimental results demonstrating the effectiveness of this approach are reported.
基于内容的图像检索的多分辨率小波变换和监督学习
我们专注于定义一种有效的策略,该策略允许用户提出视觉查询并从数据库中检索一组满足其图像相似性标准的图像,而无需对其进行任何语义表达。该策略利用多分辨率小波变换来有效地描述图像内容。图像的显著特征编码在预定义长度的签名中,在检索阶段通过应用系统预先学习的相似性度量进行比较,使用有序响应的回归模型,从“非常相似”,“相当相似”,“不太相似”和“不同”对图像的学习集。实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信