Yoshihiro Tanaka, Keitarou Oka, Takatsugu Ono, Koji Inoue
{"title":"Accuracy analysis of machine learning-based performance modeling for microprocessors","authors":"Yoshihiro Tanaka, Keitarou Oka, Takatsugu Ono, Koji Inoue","doi":"10.1109/JEC-ECC.2016.7518973","DOIUrl":null,"url":null,"abstract":"This paper analyzes accuracy of performance models generated by machine learning-based empirical modeling methodology. Although the accuracy strongly depends on the quality of learning procedure, it is not clear what kind of learning algorithms and training data set (or feature) should be used. This paper inclusively explores the learning space of processor performance modeling as a case study. We focus on static architectural parameters as training data set such as cache size and clock frequency. Experimental results show that a tree-based non-linear regression modeling is superior to a stepwise linear regression modeling. Another observation is that clock frequency is the most important feature to improve prediction accuracy.","PeriodicalId":362288,"journal":{"name":"2016 Fourth International Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC)","volume":"536 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fourth International Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JEC-ECC.2016.7518973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper analyzes accuracy of performance models generated by machine learning-based empirical modeling methodology. Although the accuracy strongly depends on the quality of learning procedure, it is not clear what kind of learning algorithms and training data set (or feature) should be used. This paper inclusively explores the learning space of processor performance modeling as a case study. We focus on static architectural parameters as training data set such as cache size and clock frequency. Experimental results show that a tree-based non-linear regression modeling is superior to a stepwise linear regression modeling. Another observation is that clock frequency is the most important feature to improve prediction accuracy.