IoT Sensor Data Consistency using Deep Learning

I. Zualkernan, Nadeen Ahmed, A. Elmeligy, Adham Abdelnaby, Nouran Sheta
{"title":"IoT Sensor Data Consistency using Deep Learning","authors":"I. Zualkernan, Nadeen Ahmed, A. Elmeligy, Adham Abdelnaby, Nouran Sheta","doi":"10.1109/IoTaIS56727.2022.9975955","DOIUrl":null,"url":null,"abstract":"Sensor data consistency in Internet of Things (IoT) Applications is the problem of ensuring that large number of sensors in a system are providing mutually consistent values. Detection of data inconsistency can be used to detect unusual conditions like malicious intrusion and other anomalous situation. Machine learning-based anomaly detection approaches can be used to detect sensor data inconsistency. This paper studies the problem of sensor data consistency in the context of detecting hotspots in sensor data being generated in pairs of sensors embedded in a commercial IoT system deployed to monitor grain in large horizontal grain bins. The paper explores how well traditional anomaly detection machine learning algorithms like Location Factor, Isolation Forest, and One class support vector machine work in this environment. A memory efficient Long Short-Term Memory (LSTM) deep learning model was proposed that outperformed the traditional machine learning approaches.","PeriodicalId":138894,"journal":{"name":"2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IoTaIS56727.2022.9975955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sensor data consistency in Internet of Things (IoT) Applications is the problem of ensuring that large number of sensors in a system are providing mutually consistent values. Detection of data inconsistency can be used to detect unusual conditions like malicious intrusion and other anomalous situation. Machine learning-based anomaly detection approaches can be used to detect sensor data inconsistency. This paper studies the problem of sensor data consistency in the context of detecting hotspots in sensor data being generated in pairs of sensors embedded in a commercial IoT system deployed to monitor grain in large horizontal grain bins. The paper explores how well traditional anomaly detection machine learning algorithms like Location Factor, Isolation Forest, and One class support vector machine work in this environment. A memory efficient Long Short-Term Memory (LSTM) deep learning model was proposed that outperformed the traditional machine learning approaches.
使用深度学习的物联网传感器数据一致性
物联网(IoT)应用中的传感器数据一致性是确保系统中大量传感器提供相互一致的值的问题。数据不一致检测可用于检测异常情况,如恶意入侵和其他异常情况。基于机器学习的异常检测方法可用于检测传感器数据不一致。本文研究了用于监测大型卧式粮仓粮食的商用物联网系统中嵌入的成对传感器产生的传感器数据热点检测背景下的传感器数据一致性问题。本文探讨了传统的异常检测机器学习算法,如定位因子、隔离森林和一类支持向量机在这种环境下的工作效果。提出了一种高效的长短期记忆深度学习模型,该模型优于传统的机器学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信