The number of independent sets in a connected graph and its complement

Yarong Wei, Yumei Hu
{"title":"The number of independent sets in a connected graph and its complement","authors":"Yarong Wei, Yumei Hu","doi":"10.26493/2590-9770.1258.C2B","DOIUrl":null,"url":null,"abstract":"For a connected graph G, the total number of independent vertex sets (including the empty vertex set) is denoted by i(G). In this paper, we consider Nordhaus-Gaddum-type inequalities for the number of independent sets of a connected graph with connected complement. First we define a transformation on a graph that increases i(G) and i(G). Next, we obtain the minimum and maximum value of i(G) + i(G), where graph G is a tree T with connected complement and a unicyclic graph G with connected complement, respectively. In each case, we characterize the extremal graphs. Finally, we establish an upper bound on the i(G) in terms of the Wiener polarity index.","PeriodicalId":236892,"journal":{"name":"Art Discret. Appl. Math.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art Discret. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1258.C2B","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For a connected graph G, the total number of independent vertex sets (including the empty vertex set) is denoted by i(G). In this paper, we consider Nordhaus-Gaddum-type inequalities for the number of independent sets of a connected graph with connected complement. First we define a transformation on a graph that increases i(G) and i(G). Next, we obtain the minimum and maximum value of i(G) + i(G), where graph G is a tree T with connected complement and a unicyclic graph G with connected complement, respectively. In each case, we characterize the extremal graphs. Finally, we establish an upper bound on the i(G) in terms of the Wiener polarity index.
连通图及其补中的独立集的数目
对于连通图G,独立顶点集(包括空顶点集)的总数用i(G)表示。本文研究具有连通补的连通图的独立集数的nordhaus - gaddum型不等式。首先我们在一个图上定义一个变换,它增加i(G)和i(G)。然后,我们得到了i(G) + i(G)的最小值和最大值,其中图G分别是连通补的树T和连通补的单环图G。在每种情况下,我们对极值图进行表征。最后,我们用维纳极性指数建立了i(G)的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信