A Scalable AI Training Platform for Remote Sensing Data

Hendrik M. Würz, Kevin Kocon, Barbara Pedretscher, E. Klien, E. Eggeling
{"title":"A Scalable AI Training Platform for Remote Sensing Data","authors":"Hendrik M. Würz, Kevin Kocon, Barbara Pedretscher, E. Klien, E. Eggeling","doi":"10.5194/agile-giss-4-53-2023","DOIUrl":null,"url":null,"abstract":"Abstract. We present a platform to support the AI development lifecycle with focus on large data like remote sensing.We target developers who are not allowed to use existing commercial cloud platforms for legal reasons or data compliance. The flexible implementation of our platform enables a deployment on classic server infrastructures as well as on internal clouds. Our goals of scalable and resource-efficient execution, independence from specific AI frameworks and programming languages, as well as reproducibility of results are met through a workflow-based calculation combined with the tool Data Version Control. The capabilities of the platform are demonstrated by training an AI-based forest type classification.\n","PeriodicalId":116168,"journal":{"name":"AGILE: GIScience Series","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGILE: GIScience Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/agile-giss-4-53-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. We present a platform to support the AI development lifecycle with focus on large data like remote sensing.We target developers who are not allowed to use existing commercial cloud platforms for legal reasons or data compliance. The flexible implementation of our platform enables a deployment on classic server infrastructures as well as on internal clouds. Our goals of scalable and resource-efficient execution, independence from specific AI frameworks and programming languages, as well as reproducibility of results are met through a workflow-based calculation combined with the tool Data Version Control. The capabilities of the platform are demonstrated by training an AI-based forest type classification.
一种可扩展的遥感数据人工智能训练平台
摘要我们提出了一个支持人工智能开发生命周期的平台,重点关注遥感等大数据。我们的目标是由于法律原因或数据合规性而不允许使用现有商业云平台的开发人员。我们平台的灵活实现支持在经典服务器基础设施和内部云上进行部署。我们的目标是可扩展和资源高效执行,独立于特定的人工智能框架和编程语言,以及结果的可重复性,通过基于工作流的计算与数据版本控制工具相结合来实现。通过训练基于人工智能的森林类型分类,证明了该平台的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信