Inline Traffic Analysis Attacks on DNS over HTTPS

T. Dahanayaka, Zhiyi Wang, Guillaume Jourjon, Suranga Seneviratne
{"title":"Inline Traffic Analysis Attacks on DNS over HTTPS","authors":"T. Dahanayaka, Zhiyi Wang, Guillaume Jourjon, Suranga Seneviratne","doi":"10.1109/LCN53696.2022.9843593","DOIUrl":null,"url":null,"abstract":"Even though end-to-end encryption was introduced to Domain Name System (DNS) communications to ensure user privacy and there is an increase in adoption of DNS over HTTPS (DoH), prior research has demonstrated that encrypted DNS traffic is vulnerable to traffic analysis attacks. However, these attacks were demonstrated under strong assumptions such as handling only closed-set classification or doing only post-event analysis. In this work we demonstrate traffic analysis attacks on DoH without such strong assumptions. We first show the feasibility of website fingerprinting over DoH traffic and present an inline traffic analysis attack that achieve over 90% accuracy using DoH traces of length as short as ten packets. Next, we propose a novel open-set classification method and achieve over 75% accuracy on both closed-set and open-set samples for the open-set scenario. Finally, we demonstrate that the same attack can be performed without any knowledge on the start of the activity.","PeriodicalId":303965,"journal":{"name":"2022 IEEE 47th Conference on Local Computer Networks (LCN)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 47th Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN53696.2022.9843593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Even though end-to-end encryption was introduced to Domain Name System (DNS) communications to ensure user privacy and there is an increase in adoption of DNS over HTTPS (DoH), prior research has demonstrated that encrypted DNS traffic is vulnerable to traffic analysis attacks. However, these attacks were demonstrated under strong assumptions such as handling only closed-set classification or doing only post-event analysis. In this work we demonstrate traffic analysis attacks on DoH without such strong assumptions. We first show the feasibility of website fingerprinting over DoH traffic and present an inline traffic analysis attack that achieve over 90% accuracy using DoH traces of length as short as ten packets. Next, we propose a novel open-set classification method and achieve over 75% accuracy on both closed-set and open-set samples for the open-set scenario. Finally, we demonstrate that the same attack can be performed without any knowledge on the start of the activity.
内联流量分析基于HTTPS协议的DNS攻击
尽管端到端加密被引入到域名系统(DNS)通信中以确保用户隐私,并且通过HTTPS (DoH)采用DNS的情况有所增加,但先前的研究表明,加密的DNS流量很容易受到流量分析攻击。然而,这些攻击是在强假设下进行的,例如只处理闭集分类或只进行事后分析。在这项工作中,我们演示了在没有这种强假设的情况下对DoH的流量分析攻击。我们首先展示了在DoH流量上进行网站指纹识别的可行性,并提出了一种内联流量分析攻击,该攻击使用长度短至10个数据包的DoH跟踪实现了90%以上的准确率。接下来,我们提出了一种新的开集分类方法,在开集场景下,对闭集和开集样本的分类准确率都超过75%。最后,我们演示了可以在不知道活动开始的情况下执行相同的攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信