Identification and data-driven reduced-order modeling for linear conservative port- and self-adjoint Hamiltonian systems

P. Rapisarda, A. Schaft
{"title":"Identification and data-driven reduced-order modeling for linear conservative port- and self-adjoint Hamiltonian systems","authors":"P. Rapisarda, A. Schaft","doi":"10.1109/CDC.2013.6759873","DOIUrl":null,"url":null,"abstract":"Given a sufficiently numerous set of vector-exponential trajectories of a conservative port-Hamiltonian system and the supply rate, we compute a corresponding set of state trajectories by factorizing a constant Pick-like matrix. State equations are then obtained by solving a system of linear equations involving the system trajectories and the computed state ones. If a factorization of only a principal submatrix of the Pick matrix is performed, our procedure yields a lower-order conservative port-Hamiltonian model obtained by projection of the full-order one. We also describe a similar approach to identification and model-order reduction for self-adjoint Hamiltonian systems.","PeriodicalId":415568,"journal":{"name":"52nd IEEE Conference on Decision and Control","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"52nd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2013.6759873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Given a sufficiently numerous set of vector-exponential trajectories of a conservative port-Hamiltonian system and the supply rate, we compute a corresponding set of state trajectories by factorizing a constant Pick-like matrix. State equations are then obtained by solving a system of linear equations involving the system trajectories and the computed state ones. If a factorization of only a principal submatrix of the Pick matrix is performed, our procedure yields a lower-order conservative port-Hamiltonian model obtained by projection of the full-order one. We also describe a similar approach to identification and model-order reduction for self-adjoint Hamiltonian systems.
线性保守港伴和自伴哈密顿系统的辨识和数据驱动的降阶建模
给定一个守恒波特-哈密顿系统的足够多的向量-指数轨迹集和供给率,我们通过分解一个常数类匹克矩阵来计算相应的状态轨迹集。然后通过求解包含系统轨迹和计算状态方程的线性方程组得到状态方程。如果只对Pick矩阵的一个主子矩阵进行因式分解,我们的过程得到一个低阶保守的port- hamilton模型,该模型是由全阶的投影得到的。我们还描述了一种类似的方法来识别和模型阶约简的自伴随哈密顿系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信