Spatio-Temporal Texture Features for Presentation Attack Detection in Biometric Systems

S. Pan, F. Deravi
{"title":"Spatio-Temporal Texture Features for Presentation Attack Detection in Biometric Systems","authors":"S. Pan, F. Deravi","doi":"10.1109/EST.2019.8806220","DOIUrl":null,"url":null,"abstract":"Spatio-temporal information is valuable as a discriminative cue for presentation attack detection, where the temporal texture changes and fine-grained motions (such as eye blinking) can be indicative of some types of spoofing attacks. In this paper, we propose a novel spatio-temporal feature, based on motion history, which can offer an efficient way to encapsulate temporal texture changes. Patterns of motion history are used as primary features followed by secondary feature extraction using Local Binary Patterns and Convolutional Neural Networks, and evaluated using the Replay Attack and CASIA-FASD datasets, demonstrating the effectiveness of the proposed approach.","PeriodicalId":102238,"journal":{"name":"2019 Eighth International Conference on Emerging Security Technologies (EST)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Eighth International Conference on Emerging Security Technologies (EST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EST.2019.8806220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Spatio-temporal information is valuable as a discriminative cue for presentation attack detection, where the temporal texture changes and fine-grained motions (such as eye blinking) can be indicative of some types of spoofing attacks. In this paper, we propose a novel spatio-temporal feature, based on motion history, which can offer an efficient way to encapsulate temporal texture changes. Patterns of motion history are used as primary features followed by secondary feature extraction using Local Binary Patterns and Convolutional Neural Networks, and evaluated using the Replay Attack and CASIA-FASD datasets, demonstrating the effectiveness of the proposed approach.
生物识别系统中用于表示攻击检测的时空纹理特征
时空信息作为表示攻击检测的判别线索是有价值的,其中时间纹理变化和细粒度运动(如眨眼)可以指示某些类型的欺骗攻击。在本文中,我们提出了一种新的基于运动历史的时空特征,它可以提供一种有效的方法来封装时间纹理变化。将运动历史模式作为主要特征,然后使用局部二进制模式和卷积神经网络进行次要特征提取,并使用重播攻击和CASIA-FASD数据集进行评估,证明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信