Leveraging tweet ranking in an optimization framework for tweet timeline generation

Lili Yao, Feifan Fan, Yansong Feng, Dongyan Zhao
{"title":"Leveraging tweet ranking in an optimization framework for tweet timeline generation","authors":"Lili Yao, Feifan Fan, Yansong Feng, Dongyan Zhao","doi":"10.1145/2910896.2925453","DOIUrl":null,"url":null,"abstract":"When users search in Twitter, they are overloaded with a mass of microblog posts every time, which are not particularly informative and lack of meaningful organization. Therefore, it is helpful to produce a summarized tweet timeline about the topic. The tweet timeline generation is such a task aiming at selecting a small set of representative tweets to generate meaningful timeline. In this paper, we introduce an optimization framework to jointly model the relevance, novelty and coverage of the tweet timeline, including effective tweet ranking algorithm. Extensive experiments on the public TREC 2014 dataset demonstrate our method can achieve very competitive results against the state-of-art TTG systems.","PeriodicalId":109613,"journal":{"name":"2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL)","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM Joint Conference on Digital Libraries (JCDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2910896.2925453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When users search in Twitter, they are overloaded with a mass of microblog posts every time, which are not particularly informative and lack of meaningful organization. Therefore, it is helpful to produce a summarized tweet timeline about the topic. The tweet timeline generation is such a task aiming at selecting a small set of representative tweets to generate meaningful timeline. In this paper, we introduce an optimization framework to jointly model the relevance, novelty and coverage of the tweet timeline, including effective tweet ranking algorithm. Extensive experiments on the public TREC 2014 dataset demonstrate our method can achieve very competitive results against the state-of-art TTG systems.
利用tweet排名在tweet时间线生成的优化框架
当用户在Twitter上进行搜索时,每次都会被大量的微博超载,这些微博的信息量并不特别大,也缺乏有意义的组织。因此,生成关于该主题的汇总tweet时间轴是有帮助的。推文时间线生成就是这样一个任务,目的是选择一小部分有代表性的推文,生成有意义的时间线。在本文中,我们引入了一个优化框架来联合建模推文时间轴的相关性、新颖性和覆盖率,包括有效的推文排名算法。在公共TREC 2014数据集上的大量实验表明,我们的方法可以获得与最先进的TTG系统非常有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信