{"title":"Centralized self-optimization of interference management in LTE-A HetNets","authors":"Yasir Khan, B. Sayraç, É. Moulines","doi":"10.1017/CBO9781107297333.016","DOIUrl":null,"url":null,"abstract":"In this chapter we address interference mitigation in LTE-A co-channel Het-Net deployments, a major issue for reaching substantial capacity enhancements. We provide an extensive literature survey of the existing co-channel interference mitigation methods involving optimization of the related network parameters, resulting in corresponding improvements in quality of service (QoS). Since the number of base stations (macro, micro, pico, and femto) increases considerably in a HetNet deployment, optimization of network parameters with such a high number of nodes becomes complex and costly, calling for the inevitable need for self-optimization. We propose a self-optimization framework based on efficient statistical modeling combined with robust sequential optimization, which is very suitable for implementation in a centralized manner at the operator’s management plane. In particular, the proposed methodology is based on the following two concepts, which will be described in detail.","PeriodicalId":315180,"journal":{"name":"Design and Deployment of Small Cell Networks","volume":"266 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design and Deployment of Small Cell Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/CBO9781107297333.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this chapter we address interference mitigation in LTE-A co-channel Het-Net deployments, a major issue for reaching substantial capacity enhancements. We provide an extensive literature survey of the existing co-channel interference mitigation methods involving optimization of the related network parameters, resulting in corresponding improvements in quality of service (QoS). Since the number of base stations (macro, micro, pico, and femto) increases considerably in a HetNet deployment, optimization of network parameters with such a high number of nodes becomes complex and costly, calling for the inevitable need for self-optimization. We propose a self-optimization framework based on efficient statistical modeling combined with robust sequential optimization, which is very suitable for implementation in a centralized manner at the operator’s management plane. In particular, the proposed methodology is based on the following two concepts, which will be described in detail.