Multi-Perspective Modeling for Click Event Prediction

Tzu-Chun Lin, Xia Ning
{"title":"Multi-Perspective Modeling for Click Event Prediction","authors":"Tzu-Chun Lin, Xia Ning","doi":"10.1145/2813448.2813520","DOIUrl":null,"url":null,"abstract":"We present our solutions to the RecSys Challenge 2015. We propose a multi-perspective modeling scheme for click event prediction, which involves techniques from sophisticated feature engineering for both click sessions and clicked items, classification based on gradient boosting tree, semi-supervised learning that utilizes information from test data, multi-class classification for different categories of sessions and items, classifier-based feature fusion from multi-class classification and in the end classifier ensembles from multiple models. We demonstrate that our scheme is intuitive, flexible and powerful for the Challenge tasks. Our solution based on the scheme achieves a score of 49,517.2 in the Challenge.","PeriodicalId":324873,"journal":{"name":"Proceedings of the 2015 International ACM Recommender Systems Challenge","volume":"71 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International ACM Recommender Systems Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2813448.2813520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present our solutions to the RecSys Challenge 2015. We propose a multi-perspective modeling scheme for click event prediction, which involves techniques from sophisticated feature engineering for both click sessions and clicked items, classification based on gradient boosting tree, semi-supervised learning that utilizes information from test data, multi-class classification for different categories of sessions and items, classifier-based feature fusion from multi-class classification and in the end classifier ensembles from multiple models. We demonstrate that our scheme is intuitive, flexible and powerful for the Challenge tasks. Our solution based on the scheme achieves a score of 49,517.2 in the Challenge.
点击事件预测的多视角建模
我们提出了我们的解决方案,以RecSys挑战2015。我们提出了一种多视角的点击事件预测建模方案,该方案涉及以下技术:针对点击会话和点击项目的复杂特征工程、基于梯度提升树的分类、利用测试数据信息的半监督学习、针对不同类别的会话和项目的多类分类、多类分类中基于分类器的特征融合以及最终来自多个模型的分类器集成。我们证明了我们的方案是直观的,灵活的和强大的挑战任务。我们基于该方案的解决方案在挑战赛中获得了49,517.2分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信