Robust Lane Detection via Filter Estimator and Data Augmentation

Yao–Ming Zhang, S. Lin, Tzu-Hsiang Chou, Sin-Ye Jhong, Yung-Yao Chen
{"title":"Robust Lane Detection via Filter Estimator and Data Augmentation","authors":"Yao–Ming Zhang, S. Lin, Tzu-Hsiang Chou, Sin-Ye Jhong, Yung-Yao Chen","doi":"10.1109/ICCE-Taiwan55306.2022.9869116","DOIUrl":null,"url":null,"abstract":"Lane detection is an important topic in the self-driving system. Having a stable lane detection system will assist the self-driving cars to make decisions in order to bring a more comfortable and safe driving environment to the driver. In this paper, we use a network architecture composed of Encoder-Decoder with a Feature Shift Aggregator between them to make the prediction more comprehensive; through our dataset, we found that some problems such as glitches occur when changing lanes. In this regard, we use Data Augmentation and Filter respectively to solve the problem. Finally, the network achieves the result accuracy rate of SOTA on the TuSimple dataset.","PeriodicalId":164671,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics - Taiwan","volume":"69 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Lane detection is an important topic in the self-driving system. Having a stable lane detection system will assist the self-driving cars to make decisions in order to bring a more comfortable and safe driving environment to the driver. In this paper, we use a network architecture composed of Encoder-Decoder with a Feature Shift Aggregator between them to make the prediction more comprehensive; through our dataset, we found that some problems such as glitches occur when changing lanes. In this regard, we use Data Augmentation and Filter respectively to solve the problem. Finally, the network achieves the result accuracy rate of SOTA on the TuSimple dataset.
基于滤波估计和数据增强的鲁棒车道检测
车道检测是自动驾驶系统中的一个重要课题。拥有稳定的车道检测系统将有助于自动驾驶汽车做出决策,从而为驾驶员带来更加舒适和安全的驾驶环境。在本文中,我们使用了一个由编码器-解码器组成的网络架构,并在它们之间添加了一个特征移位聚合器,使预测更加全面;通过我们的数据集,我们发现一些问题,如小故障,发生在变道。在这方面,我们分别使用Data Augmentation和Filter来解决问题。最后,该网络在TuSimple数据集上实现了SOTA的结果准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信