J. Schiffer, Oliver Sven Bohlen, R. D. De Doncker, D. Sauer, Kyunyoung Ahn
{"title":"Optimized energy management for fuelcell-supercap hybrid electric vehicles","authors":"J. Schiffer, Oliver Sven Bohlen, R. D. De Doncker, D. Sauer, Kyunyoung Ahn","doi":"10.1109/VPPC.2005.1554637","DOIUrl":null,"url":null,"abstract":"Combining a fuel cell (FC) as primary power source with a supercap (SC) as a buffer for high power demands is a promising approach for future hybrid electric vehicles (HEV). The objective of an energy management is to minimize the hydrogen consumption and to assure power availability at any time. A simulation environment incorporating models of the FC and SC stacks and the kinetic state of the vehicle allow the detailed analysis and comparison of control strategies. Control strategies that operate the fuel cell most efficiently and take best advantage of the supercap can save more than 20% hydrogen fuel.","PeriodicalId":430886,"journal":{"name":"2005 IEEE Vehicle Power and Propulsion Conference","volume":"603 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Vehicle Power and Propulsion Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC.2005.1554637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42
Abstract
Combining a fuel cell (FC) as primary power source with a supercap (SC) as a buffer for high power demands is a promising approach for future hybrid electric vehicles (HEV). The objective of an energy management is to minimize the hydrogen consumption and to assure power availability at any time. A simulation environment incorporating models of the FC and SC stacks and the kinetic state of the vehicle allow the detailed analysis and comparison of control strategies. Control strategies that operate the fuel cell most efficiently and take best advantage of the supercap can save more than 20% hydrogen fuel.