Neural Network Detectors for Molecular Communication Systems

N. Farsad, A. Goldsmith
{"title":"Neural Network Detectors for Molecular Communication Systems","authors":"N. Farsad, A. Goldsmith","doi":"10.1109/SPAWC.2018.8445926","DOIUrl":null,"url":null,"abstract":"We consider molecular communication systems and show it is possible to train detectors without any knowledge of the underlying channel models. In particular, we demonstrate that a technique we previously developed, which is called sliding bidirectional recurrent neural network (SBRNN), performs well for a wide range of channel states when it is trained using a dataset that contains many sample transmissions under various channel conditions. We also demonstrate that the bit error rate (BER) performance of the proposed SBRNN detector is better than that of a Viterbi detector (VD) with imperfect channel state information (CSI) and it is computationally efficient.","PeriodicalId":240036,"journal":{"name":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2018.8445926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We consider molecular communication systems and show it is possible to train detectors without any knowledge of the underlying channel models. In particular, we demonstrate that a technique we previously developed, which is called sliding bidirectional recurrent neural network (SBRNN), performs well for a wide range of channel states when it is trained using a dataset that contains many sample transmissions under various channel conditions. We also demonstrate that the bit error rate (BER) performance of the proposed SBRNN detector is better than that of a Viterbi detector (VD) with imperfect channel state information (CSI) and it is computationally efficient.
分子通信系统中的神经网络检测器
我们考虑分子通信系统,并证明在不了解底层通道模型的情况下训练检测器是可能的。特别是,我们证明了我们之前开发的一种称为滑动双向递归神经网络(SBRNN)的技术,当它使用包含各种信道条件下许多样本传输的数据集进行训练时,它在广泛的信道状态下表现良好。我们还证明了所提出的SBRNN检测器的误码率(BER)性能优于具有不完全信道状态信息(CSI)的Viterbi检测器(VD),并且具有计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信