Design Space Optimization with Machine Learning Library Pruning

Ang Boon Chong, Bima Sahbani, Ng Kok Aun, Ch'ng Pei Chun
{"title":"Design Space Optimization with Machine Learning Library Pruning","authors":"Ang Boon Chong, Bima Sahbani, Ng Kok Aun, Ch'ng Pei Chun","doi":"10.1109/ICM52667.2021.9664951","DOIUrl":null,"url":null,"abstract":"In recent years, machine learning is a hot topic for electronic design automation (EDA). The design industries are leveraging the power of machine learning to drive the predictability of the physical design and signoff. The current machine learning application in IC design mainly focus on yield modelling, lithography hotspot, noise modeling, process variation modelling, performance modelling for analogue circuit and implementation space exploration. This paper will share the idea of library auto-pruning with machine learning. The pruned library is feed as permuton to design space optimizer AI. The pruned library permuton provides additional 7% leakage saving and potentially 15% max frequency improvement.","PeriodicalId":212613,"journal":{"name":"2021 International Conference on Microelectronics (ICM)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM52667.2021.9664951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In recent years, machine learning is a hot topic for electronic design automation (EDA). The design industries are leveraging the power of machine learning to drive the predictability of the physical design and signoff. The current machine learning application in IC design mainly focus on yield modelling, lithography hotspot, noise modeling, process variation modelling, performance modelling for analogue circuit and implementation space exploration. This paper will share the idea of library auto-pruning with machine learning. The pruned library is feed as permuton to design space optimizer AI. The pruned library permuton provides additional 7% leakage saving and potentially 15% max frequency improvement.
基于机器学习库修剪的设计空间优化
近年来,机器学习是电子设计自动化(EDA)领域的研究热点。设计行业正在利用机器学习的力量来推动物理设计和签字的可预测性。目前机器学习在集成电路设计中的应用主要集中在良率建模、光刻热点、噪声建模、工艺变化建模、模拟电路性能建模和实现空间探索等方面。本文将分享与机器学习相结合的库自动修剪的思想。修剪后的库作为置换提供给设计空间优化器AI。修剪后的库排列提供了额外的7%的泄漏节省和潜在的15%的最大频率改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信